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 Tracking abundant gene transcripts quantification over continuous cancer progression stages 
may reveal the mechanism of disease advancement. In this work, we profile the transcript 
quantification over the stages using a time-series approach, in which the stages/sub-stages of the 
disease are the time points, and the quantification measurements are the values. The values over 
time points are used to interpolate the growth of the progression using the cubic spline function. 
Then, the transcripts profiles are universally aligned and clustered using the time-series profile 
hierarchical clustering method based on the area between each pair of the aligned profiles; the 
method is named (HC-UAP). We compare the proposed method with a hierarchical clustering 
method based on Euclidean distance (HC-ED). Both methods were applied on two next-
generation sequencing (NGS) prostate cancer datasets, the first from the Chinese and the second 
from the North American population. HC-ED clusters the dataset to find patterns while HC-UAP 
was able to single out outliers that trend differently in both datasets. While finding patterns in 
gene expression  that trend over stages is the standard approach for analyzing time-series models, 
identifying outlier transcripts that grow differently than other transcripts can provide more details 
about the contribution of the mRNA transcriptional activity to the disease. They also can be a 
potential biomarker for the disease progression. 
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1. Introduction 

Time-series models have been receiving attention lately in health diagnosis and prediction field (Zhang et al., 2019; Ernst 
et al., 2006). Researchers usually focus on clustering gene expression time series profiles (Ernst et al., 2006; Chiu et al., 
2015). Rueda et al. (2007) proposed a clustering method is based on a profile-alignment approach, that minimizes the 
(square) area between two aligned profiles, to hierarchically cluster microarray time series data (Subhani et al., 2010). 
Subhani et al. (2010) introduced unsupervised machine learning model by clustering multiple aligned gene expression 
profiles. The method generalizes pairwise alignment to all profiles by selecting one profile as the axis to the pairwise 
alignments with the rest. They combined k-means and expectation maximization (EM) clustering with multiple alignments 
to cluster gene profiles time-series data (Subhani et al., 2010). Distance function is required by any time-series clustering 
method to find the dissimilarity between samples as well as between clusters (Davies & Bouldin, 1979). Based on the nature 
of the biological clustering model, it may require a specific distance function that suits best for the model (Jaskowiak et al., 
2014). Distance functions are categorized into metric and non-metric methods, Euclidean distance is an example of the 
metric distance function. Euclidean distance has been used in gene expression clustering (Vedell et al., 2013, Ferrari & De 
Castro 2015). Vedell et al. (2013) used a hybrid adaptive tree cut for hierarchical clustering dendrogram method to obtain 
transcript abundance profiles  based on Euclidean distance. Gene expression changes were identified by reverse 
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transcriptase poly- merase chain reaction in rat livers, then they were treated using three-time points 2, 7, and 21 days. 
The clusters show some patterns that can predict certain physiologic consequences of agonist treatment. Ferrari et al. (2015) 
proposed a clustering algorithm selection by meta-learning systems: A new distance-based problem characterization and 
ranking combination methods. The features are three sets of meta-attributes; the first contains the direct characterization 
attributes, the second applies indirect methods based on Euclidean distance, while the third combines the first and second.  
 
Chiue et al. (2015) applied cubic B-spline interpolation on gene expression time-series data to impute the missing values. 
The method constructs a gene relativity graph that has sliding windows throughout gene expression profiles to cluster the 
time-series data. Chira et al. (2015) proposed a shape-output clustering method that studies co-expressed gene growth 
patterns in time-series data. The shape overtime points for the RNA quantification profiles have been utilized as a distance 
function to cluster the genes. The results show an association between gene expressions and production variables. Many 
researchers proposed clustering methods to capture outliers (Pamula et al., 2011; Marghny et al., 2014). Pamula et al. (2011) 
applied k-means clustering to detect outliers. Marghny et al. (2014) proposed a genetic algorithm based on k-means 
clustering to identify outliers then remove them. In this work, we are extending our previous work, which assumes that 
prostate cancer stage/sub-stages are the time points to model the progression of the disease (Alkhateeb et al., 2015). The 
assumption here is that any biological process is continuous over time. This work focuses on transcripts quantification rather 
than gene expression for more transcriptomic details. The outliers’ transcripts behave differently throughout the stages/sub-
stages are not considered as noise. The different trending of these transcripts may provide a biological insight for the 
progression of prostate cancer over the different levels of aggressiveness. 
 
2. Materials and methods 
 
The two NGS datasets have been downloaded from the publicly available NCBI database. The first dataset contains Eight 
samples from the Chinese population with NCBI SRA study number ERP000550 (Ren et al., 2012). The second dataset 
from the North American population with NCBI SRA study number GSE54460 contains 106 samples from the North 
American population (Long et al., 2014). Both works described the methods of collecting data in their geographical 
populations, consented to their patients, and adhered to their funding agencies rules and regulations (Ren et al., 2012; Long 
et al., 2014). 

 
Table 1 
The first data set tumor samples 

Stage/Sub-stage Samples 
T1cN0M0 ERR031038 
T2aN0M0 ERR031032 
T2bN0M0 ERR031026 

 ERR299297 
T2cN0M0 ERR031044 

 ERR299295 
T3bN0M0 ERR031040 
T4N0M0 ERR299298 

 
2.1 Data pre-processing 
 
For the first dataset, all the mRNA reads were aligned to human reference hg19 using Tophat2 (Trapnell et al., 2012), then, 
the aligned reads of each sample were fed into Cufflinks (Trapnell et al., 2012) to assemble the transcripts using the reads 
guided by the transcript annotation. Cufflinks quantifies the aligned reads on each transcript measured by Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM). For the second dataset, the reads were aligned to reference genome 
hg19 and constructed the transcripts using STAR (Dobin et al., 2013) and RSEM (Li & Dewey, 2011). Fig. 1 depicts the 
flow of the preprocessing pipeline which has been applied on both datasets. Table 1 lists the samples from the first dataset. 
The sample stage/substage refers to the classification of malignant tumors (TNM), which is a global standard for classifying 
the extent of spread of cancer, it is widely used for solid tumors. The classification starts with T to describe the size of the 
tumor, and sub-stage as a lower-case letter following the number. N describes the nearby (regional) lymph nodes that are 
involved, but in this study, no lymph is involved, so all samples have ”0” that is following N. The last character M indicates 
the distant metastasis, all samples in the first dataset have not metastasized to other organs, therefore, all samples have M0. 
The relative abundance for each transcript in each sequenced sample is used as a measurement value of the transcript 
expression. Then we found the differently expressed transcripts for all the stage/sub-stages using Cuffdiff method which is 
part of Cufflinks package. Cuffdiff uses different statistical tests to determine whether or not a value is differentially 
expressed among the same transcripts values for the different stage/sub-stage. Then, any transcript that differently expressed 
at one or more stage/sub-stage, is considered to create a profile for it, while the remaining, which have no differently 
expression at any stage/substage is omitted. The total number of considered transcripts is 19,698 transcript profiles. The 
profile of a transcript consists of the abundances that are calculated by Cuffdiff for the transcripts at each stage/sub-stage, 
which is the log of the average FPKM values from all patients’ samples at the same stage/sub-stage. 
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Fig. 1. The pipeline for preprocessing each sample in the data set 

 
2.2 Natural cubic spline interpolation 

Subhani et al. (2010) introduced a time-series profiles modeling using natural spline interpolations. The model interpolates 
the profiles by utilizing an arbitrary integral function that runs continuously on a finite interval. In our proposed method, 
natural cubic spline interpolates the time-series profiles, which are the quantification of transcripts on different prostate 
can cer stages/sub-stages. The interpolated time-series profile x(t) is presented a s  a vector of time points [t1, t2, ..., tn] 
as: 
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where 
 

x j(t) = x j3(t − t j)3 + x j2(t − t j)2 + x j1(t − t j)1 + x j0(t − t j) (2) 
 

where x j(t) interpolates x(t) in interval [t j, t j+1], with spline coefficients x jk ∈ R, for 1 ≤ j ≤ n − 1 and 0 ≤ k ≤ 3. At each 
interval x j(t), the first and second derivatives of the interpolated x(t) spline equals zero, which is known as the natural 
condition of the spline. The interpolation of all 19,698 created transcript profiles are shown in Fig. 2-a).  

 

2.3 Universal alignment 

For the data set X= x1(t), x2(t), ...xm(t)  , where m is the number of time-series profiles. We universally aligned the cubic spline 
interpolated profiles using pairwise alignment between each profile into one specific profile z(t).  The  alignment  process 
shifts the profile x(t) vertically towards z(t) until reaching the minimal distance. The minimum distance is defined as the 
minimum squared error between the pair. The result of universally aligned all profiles according to z(t) is seen in Fig. 2-b). 
 

2.4 Distance function 

The aim of pairwise alignment between profiles x(t) and y(t) is to minimize the distance between the 2 interpolated curves. The 
vertical shifting is shifting the curves towards each other until we obtain the minimum distance a, which is the minimum 
square error. The method stops at the minimum distance between the 2 curves. 𝑎  𝑥 𝑡 𝑦 𝑡 𝑑𝑡 (3) 

 
Next, the method aligns each profile to the global profile z(t) to minimize the distance between them without shifting z(t). 
Then the method calculates the distance between each pair of the profiles into the distance matrix D as in Eq. (3). 

RNA-Seq Samples

Aligning Reads

Accepted Hits

Reconstructing Transcripts 

Assembeled
Transcripts
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Profile clustering 

In time-series analysis, the outlier profile is defined as the one that trends differently than the rest of the profiles. The idea 
of detecting outlier profiles may reveal different biological functions of the other transcript profiles throughout the disease 
stages. In this work, outlier profiles are singled out in separate profiles, singleton clusters, or a cluster with a few profiles. In 
contrast, most of the profiles will remain in the background cluster, which will hold the vast majority of the profiles in the 
background cluster. Agglomerative clustering with maximum linkage is implemented to separate the profile with the 
furthest distance in a separate cluster. The method creates m clusters, where each profile is located  in a singleton cluster, then 
starts merging the profiles with minimum distance in one cluster. After that, one profile may join the cluster with the minimum 
distance from the cluster’s furthest profile. The method loops until reaching the number of desired clusters k, which is 
determined in the following section. Once the loop terminates, the outliers that trend differently from the other clusters are 
isolated  into outlier clusters, , which are the non-background clusters.. 
 
2.5 Determining the desired number of clusters 
 

The desired number of cluster k is determined using Profile Alignment and Agglomerative Clustering (PAAC) index. PAAC 
is proposed by Rueda et al. (2007) based on the modified version of the I-index cluster validity function (Maulik and 
Bandyopadhyay, 2002) to reduce the bias towards the smaller ks (Rueda and Bari, 2007) where q is the coefficient of 
normalizing the number of clusters increment and p the coefficient of the degree of the index. By visualizing the clusters’ 
profiles for each k, and also by plotting the values of PAAC for different ks, we were able to select the best k. With 
coefficients values p = 2 and q = 0.7 to run PAAC index on different number of k, PAAC index was utilized on both methods 
on both datasets. Where PAACs for HC-UAP that is shown in Fig. 3 peak at k = 31 for the first dataset. PAAC values peak 
at k = 8 for HC-ED on the same dataset as seen in Fig. 4. For the second dataset, HC-UAP peaks at k =20 as seen in Fig. 4 
and Fig. 5, and HC-ED peaks at k = 22 as seen in Fig. 6. 

  
(a) Original Profiles Interpotion (b) Profiles After Universal Alignment  

 
Fig. 2. The result of calculating the log(FPKM) for the quantified values of the transcript at each prostate cancer stage/sub-
stage, then interpolates the 19,698 transcript profiles. (a) all profiles before universal alignment. (b) all profiles after 
universal alignment 
 

  
Fig. 3. PAAC values for applying HC-UAP method o the first data set Fig. 4. PAAC values for applying HC-ED method on the first data set 

 

 

  

Fig. 5. PAAC values for applying HC-UAP method o the second data 
set 

Fig. 6. PAAC values for applying HC-ED method on the second data set 
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Fig. 7. The first dataset: cluster 2 - main cluster for the 
proposed method 

Fig. 8. The first dataset: cluster 2 - main cluster for the 
hierarchical clustering based on Euclidean distance 
method 

 
Table 2 
The outlier transcripts with their corresponding gene that are related to prostate cancer from the first dataset (the 
Chinese population dataset) 

Gene Transcripts Cluster number 
STMN1 NM 005563 29 

CAMK2G NM_001222 19 
RUNX3 NM_004350 22 
MSMB NM_002443 31 

PLA2G2A NM_001161728 8 
 

 
Fig. 9. The detected outliers’ clusters 1-12 from the second dataset 

 
PAAC index was utilized to carefully select the desired number of clusters k. Using validity indices for a different number 
of clusters, PAAC suggested k = 31 for the first dataset, where Cluster 2 is the background cluster that includes the majority 
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of the transcripts (19,656 profiles) as shown in Fig. 7. The rest are the outlier clusters that contain the outliers profiles as 
shown in (Alkhateeb et al., 2015). HC-ED clustered the profiles into 8 clusters based on the suggestion of PAAC analysis, 
which was addressed earlier. Despite having fewer number of clusters than the proposed method, the main cluster of the 
hierarchical method has less number of profiles (18,784) compared to the proposed method, and the main cluster of 
hierarchical missing many of the transcripts on the main trend as shown in Fig. 8, while the proposed method’s main cluster 
has trimmed-looking profiles, where the outlier transcripts are removed. The second dataset has 24,368 transcripts, PAAC 
with the same setting as for the first dataset suggested k = 20. 24,348 transcripts were identified in the background cluster, 
the rest that are mostly singleton clusters were identified in the other 19 clusters that are seen in Fig. 9 and Fig. 10. 

 

 
Fig. 10. The detected outliers clusters 12-20 from the second dataset 

 
2.6 Discussion 

Since the datasets have originated from different populations who have variant genomic and environmental conditions, the 
outlier transcripts from both datasets are different. However, both sets of outliers have shown relevancy to prostate cancer, 
and some of the outlier transcripts are related to another type of cancer as well. The two resulting sets of outliers are shown 
in Tables 2, 3 with their corresponding gene, and the cluster number in which the transcript was selected. Fig. 9 and Fig. 10 
plots the outlier transcripts in their clusters. The STMN1 is a protein coding gene for Stathmin 1, an intracellular 
phosphoprotein that is up-regulated in prostate cancer. Increased expression levels are correlated with poor prognosis and 
disease progression. Microtubule assembly requires STMN1 during mitosis and constitutive phosphorylation may lead to 
oncogenesis. Decreased levels of STMN1 cause epithelial-mesenchymal transition and metastasis through p38 and TGF-B 
mechanisms. Consequently, it has been reported that the expression levels of STMN1 may be stage-dependent (Williams et 
al., 2012). The gene product of calcium/calmodulin-dependent protein kinase II gamma (CAMK2G) is one of four subunits 
belonging to the multi-functional serine/threonine-protein kinase family. CAMK2G has been reported as an enhancer of 
cell growth and survival in many cancers. including lung cancer, leukemia, and liver cancer (Gu et al., 2012; Meng et al., 
2013; Chai et al., 2015).   

Runt-Related Transcription Factor 3 (RUNX3) gene is frequently down-regulated in prostate cancer (Chen et al., 2014). 
Decreased levels of RUNX3 increases vascular endothelial growth factor (VEGF) secretion and thereby increasing 
angiogenesis. RUNX3 down-regulation also plays a role in both tumorigenesis and metastasis through dysregulation of 
TIMP-2/MMP-2 levels (Chen et al., 2014). The microseminoprotein beta (MSMB) gene encodes prostate secretory protein 
94, a member of the immunoglobulin binding factor family. It is synthesized by the epithelial cells of the prostate gland and 
secreted into the seminal plasma. The result indicated that the expression of this gene is decreased in prostate cancer (Xuan 
et al., 1995; Sasaki et al., 1996).  

The PLA2G2A gene codes for the Phospholipase A2 group 2A extracellular enzyme that plays a role in both tumorigenesis 
and the inflammatory response (Oleksowicz et al. 2012). PLA2G2A has been shown to be up-regulated in prostate cancer 
and associated with a poor response to chemotherapy as well as an overall poor prognosis. It has been suggested that the 
PLA2G2A enzyme might suppress genes that are induced by interferons (Fijneman et al., 2009), and is a downstream target 
of the HER/HER2 pathway (Oleksowicz et al. 2012). DMKN gene is associated with prostate cancer in earlier studies 
(Srivastava et al., 2016, Gao et al., 2017).  
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Srivastava et al. (2016) reported   that DMKN has mutations with higher confidence at least in 14 samples out of 65 prostate 
samples. Gao et al. identified DMKN within a set of genes as a potential target in prostate cancer cells (Gao et al., 2017). 
Sayagués et al. (2010) detailed that disruption of the FAM27L gene may play a role in the malignant transformation and/or 
the metastasis of collateral tumors into the liver. Wang et al. (2017) reported that the nudix hydroxylase (NUDT) family of 
genes may have notable roles in cancer growth and metastasis. The study determined the prognostic ability of NUDT genes 
in clear cell renal cell carcinoma (ccRCC). Lee et al. (2017)’s results suggest that POLR2A can influence prognosis in early-
stage non-small cell lung cancer (NSCLC) patients. 
 

3. Conclusions 
 
In this work, we modeled the prostate cancer progression using a time-series model by considering the stage/sub-stage of 
cancer as a time point, then interpolate the transcript growth over time using cubic spline-based on the quantification values 
at the various time points. A hierarchical clustering method has been used to cluster the transcript into different clusters by 
a full-linkage technique to  discriminate the different trending transcripts. The distance used here was the  minimized area 
under the interpolated curves of the transcripts after universally  aligning them to a global transcript. The computational 
model was applied to two  different datasets, and it was able to extract many outlier transcripts that are  strongly related to 
the disease progression in both of them.  
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