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 Data Center energy usage has risen dramatically because of the rapid growth and demand for 
cloud computing. This excessive energy usage is a challenge from an economic and 
environmental point. Virtual Machine Placement (VMP) along with virtualization technologies 
is widely used to manage power utilization in data centers. The assignment of virtual machines 
to physical machines affects energy consumption. VMP is a process of mapping VMs onto a set 
of PMs in a data center to minimize total power consumption and maximize resource utilization. 
The VMP is an NP-hard problem due to its constraints and huge combinations. In this paper, we 
formulated the problem as a single objective optimization problem in which the objective is to 
minimize the energy consumption in cloud data centers. The main contribution of this paper is 
hybrid and adaptive harmony search algorithm for optimal placements of VMs to PMs. HSA 
with adaptive PAR settings, simulated annealing and local search strategy aims at minimizing 
energy consumption in cloud data centers with satisfying given constraints. Experiments are 
conducted to validate the performance of these variations. Results show that these hybrid HSA 
variations produce better results than basic HSA and adaptive HSA. Hybrid HS with simulated 
annealing, and local search strategy gives better results than other variants for 80 percent 
datasets. 
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1. Introduction 

 

Cloud computing is the on-demand delivery of computing resources, such as software, data storage, computing power, 
networking, and database. The different types of cloud services available such as infrastructure as a service (IaaS), software 
as a service (SaaS), and platform as a service (PaaS). There are many benefits for both data center providers and the end-
user. In general, a cloud provider is able to sell computer resources to a large number of consumers. On the other hand, 
consumers are able to buy computing resources for lower costs, as compared to the costs of keeping each of these resources 
and private infrastructure (software, hardware). Basically, a cloud provider aims at maximizing profits and that implies 
reducing the deployed computer resources as much as possible. 

Data centers are the main infrastructure of cloud computing that mainly contains IT equipment for data storage, data 
processing, and communications. To meet the user's demand these data centers operate 24/7 with thousands of active hosts 
or servers, networking equipment, storage devices (Shuja et al., 2016) and these data centers use large amounts of energy 
in their various operations. A report related to the workload of the global data center by cisco states that this workload will 
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be more than twice between 2016 and 2021 (Networking, 2016). Due to this rapid growth in demands of cloud computing 
services the energy consumption in data centers is increasing.  Data centers (DCs) have much greater operational costs than 
capital costs, and they are the single-largest power-consuming structures, accounting for roughly 2% of worldwide power 
consumption (Gartner Estimates, 2007) In addition, the number of data centers worldwide was estimated to reach at 8.6 
million in 2017, with this figure expected to rise quickly in the future. 

Much research on data center power consumption has been undertaken at various levels. The collaboration with the United 
States has resulted in several studies. The yearly energy consumption in data centers was 91 billion kWh in 2010, and it 
was predicted to rise to 140 billion kWh by 2020 (Alharbi et al., 2019). According to another estimate, data centers consume 
about 1.1-1.3 percent of total global energy consumption, with this figure expected to rise to 8% by 2020. Due to CO2 
emissions from data centers, such a large growth in energy consumption in data centers is becoming not only a major 
economic issue, but also a critical environmental concern. It is estimated that running data center servers contribute 0.5 
percent of global CO2 emissions. As a result, lowering data center power usage and virtual machine placement in cloud 
infrastructure research problems is a growing research subject. Many approaches have been studied by researchers to reduce 
energy consumption in data centers. Virtualization technology is a key to easily manage servers or physical machines (PMs). 
A number of virtual machines (VMs) are mapped on the top of PMs and then they share the physical machines (PMs) 
resources, such as CPU, memory, bandwidth, and storage. This placement of virtual machines on the physical machine in 
the data center is the process which is called virtual machine placement also called server consolidation. The VMP is 
considered an approach to efficiently manage the usage of physical machines to reduce the total number of active physical 
machines (PMs) in the data centers (Speitkamp & Bichler, 2010). The initial idea was to map virtual machines (VMs) onto 
a smaller number of energy-efficient active servers and then switch off inactive or unused hosts (Tang & Pan, 2015). The 
benefit of this switching of inactive PMs is a reduction in energy consumption and this helps to save up to 66% of the total 
energy consumption (Chen et al., 2008). However, with VMP there are some challenges and need to be addressed. One of 
the major challenges is how to find an optimal allocation or placement of VMs to PMs such that the total energy consumption 
in a data center is minimized.  VMP algorithms aim to obtain the optimal allocation of VMs to PMs with the design 
objectives. With the VMP algorithm, many design objectives have been addressed in the literature such as improving 
resource utilization, optimizing the power consumption, optimal VMs to PM placement, etc. The VMP problem is 
formulated as the bin-packing problem, and that is an NP-hard optimization problem. The VMP algorithms attempt to 
balance the usage of multidimensional resources among active physical machines in data centers. The algorithms may 
generate amounts of residual resources for each resource type of each active PM. With the anticipation of future requests, 
the residual of each resource left on each PM should be balanced along the different dimensions. Otherwise, the uneven 
leftover resources may preclude any more VM placement, consuming computer resources. A virtual machine placement 
problem shows a trade-off between energy savings and overall system performance. If a placement algorithm's objective is 
only energy savings then it is likely that physical machines become overloaded more often and their customers may 
experience some performance issues caused by the virtual machine placement. Within this algorithm, only the minimally 
necessary physical machines are kept active all the time and others are kept idle. Paper (Panigrahy et al., 2011; Xia & Tan, 
2010) tried to improve that solution by shuffling or reordering the virtual machine request queue according to some criteria 
before actual placement and they are referred to as First Fit Decreasing Algorithms. Some investigations are based on the 
Multiple Knapsack Problem and Best Fit Algorithm (Fidanova, 2021; Song et al., 2008; Singh et al., 2008; Mohamadi et 
al., 2011). Physical machines are less crowded here, and many of them are being used to deploy multiple virtual machines 
at the same time. As a result, fewer installations are anticipated at the expense of increased energy use. 

In this paper, a single-dimensional knapsack approach to the virtual machine placement problem is explored using the 
harmony search algorithm. The Harmony search algorithm is evaluated with several experiments on various data sets. 
Objectives of the paper are, 

• Design harmony search algorithm for solving virtual machine problems for minimizing energy consumption in 
cloud data centers.  

• Compare performance of harmony search algorithms with static and adaptive PAR.  

• Improve the performance of the harmony search algorithm by hybridizing with simulated annealing and local 
search operators.  

 One contribution of this paper is the proposed adaptive and hybrid harmony search algorithm for solving VMP. Proposed 
HSA variations efficiently solves the problem and helps to optimize the energy consumption by the physical machines. 
Performance of proposed algorithms is validated through several experiments.  

Our research article consists of the following sections. In section 2, we point out some of the literature reviews that we used 
for references. After that problem formulation and methodology is presented in section 3. This section describes in detail 
all of the methods used in the paper. After that, section 4 reported the simulation details, experimental details and results. 
Finally, in section 5, we conclude our research. 
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2. Literature Review 
 
VMP is one of the cloud computing challenges and affects many aspects of cloud environments. And therefore, many 
researchers studied this problem to optimize the VM placement among the available physical servers. Various objectives 
have been considered across different studies such as network traffic minimization, power consumption minimization, 
economical revenue maximization, quality of service maximization, utilization rate maximization, etc. Many methods have 
been proposed to address this VMP problem including deterministic algorithms (Chaisiri et al., 2009; Alicherry & 
Lakshman, 2013; Dang & Hermenier, 2013) and more intelligent metaheuristic algorithms (Gao et al., 2013; Abdel-Basset 
et al., 2019) 
 
Exact allocation and migration algorithms are used in cluster computing based on constraint programming for solving VMP 
problems having strengths in reducing the number of active physical machines (APM’s) and helping to reduce the migration 
cost, but the prolonged search time is a major drawback in constraint-based algorithms (Ghribi et al., 2013) This approach 
considers CPUs as only a resource and their objective functions are for optimality. Min-cut hierarchical clustering 
algorithms are based on constraint programming and use CPU, memory, and bandwidth for MLU optimization and VM 
reuse. But they have more VM migration costs (Dong et al., 2015). Group packing algorithms based on stochastic bin 
packing are used in the area of solving virtual machine placement problems and their aspect is using random variables to 
predict future bandwidth and helping to reduce APM’s in data centers (Wang et al., 2011). The VMP problem was also 
addressed as a linear programming (LP) problem (Speitkamp et al., 2010) proposed linear programming formulations to 
address issues with server consolidation problems. They focused on minimizing both the energy and the hardware costs. 
This work is suitable for data centers with up to 600 physical machines and applicable for larger problems with more than 
600 servers. 
 
Power management has been used at the data center level in one of the first works done by (Pinheiro et al., 2001). The 
authors describe a method for reducing the power consumption of a heterogeneous cluster of nodes that serves numerous 
web apps in their paper. The main technique applied is balancing the workload of physical machines and switching idle 
nodes off.  The algorithm periodically monitors the load on the resources (disk storage, CPU, and network interface) and 
decides to switch nodes on/off to optimize the overall power consumption and provide the expected performance.  Heuristic 
algorithms First-Fit Decreasing (FFD) and its other variations such as Best-Fit Decreasing (BFD) were employed to address 
the VMP problem. In these variations, the VMP problem has been formulated as a classic bin packing problem which is 
Np-Hard. These are simple algorithms and have low complexity compared to optimization algorithms. But the solutions 
obtained from these algorithms are low quality because they do not consider the different objectives that also need to be 
optimized. The results with this are not able to achieve the balanced usage of the different resources. Metaheuristics such 
as simulated annealing (Hyser et al., 2007) and ant colony optimization (Gao et al., 2013) are suggested for solving VMP. 
Some authors suggested heuristics. Some of them are simple greedy algorithms (Wood et al., 2009; Salehi et al., 2012) or 
straightforward selection policies. Chase et al. (2001) have addressed the problem of energy-efficiency management of 
homogeneous resources in cloud hosting centers. The main challenge is to identify the resource demand of each application 
at its current request load level and properly allocate resources in the most efficient way. To deal with this problem they 
have applied an economic framework: services ‘‘bid’’ for resources in terms of volume and quality.  Energy consumption 
is reduced by switching off idle servers. They have addressed the VMP problem by applying the statistical ‘‘flip-flop’’ 
filter, which helps to reduce the number of reallocations and can lead to a stable and efficient control.  
 
The Genetic Algorithm Based Approach (GABA) is used widely to solve VMP problems and deals with multiobjective 
optimization (Mi et al., 2010). Adamuthe & Patil (2018) presented multi-objective virtual machine placement in a cloud 
environment focusing on different objectives. Profit maximization, load balance, and resource waste minimization are the 
goals. The paper compared the performance of three algorithms namely GA, NSGA, and NSGA-II. 
 
Later several metaheuristic algorithms have been studied and utilized to address the problem. Evolutionary algorithms such 
as the genetic algorithm (GA) have been studied in many works.  (Adamuthe et al., 2013) added a non-dominated sorting 
genetic algorithm-II (NSGA-II) to solve the virtual machine placement problem, which was formulated as a multiobjective 
optimization problem. The work aimed at maximizing profits and the load balance among the physical machines and 
minimizing the resource wastage However, the work was evaluated for small-sized problems with up to 60 VMs.  
 
A detailed survey on the VMP problem is presented in the paper (Usmani & Singh, 2016) Classified VMP problems 
concerning different approaches depending on the goal of placement. With the recent survey allocation of virtual machines 
in cloud data centers (Mann, 2015) the problem is classified in three ways. 
 
Resource Types  
 
Most of the works and studies focus on the CPU as their main and critical resource (Batista et al., 2007; Breitgand & Epstein, 
2011) and characterize the physical machines in terms of their CPU loads. Some works make the problem multidimensional 
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by considering other resources such as memory and bandwidth (Van et al., 2019; Zhu et al., 2017) 
 
Considered V.M. set   
 
Most studies consider the placement of all virtual machines in the data center at once (Beloglazov et al., 2012; Biran et al., 
2012) However, some of them consider the placement of a single virtual machine or a set of virtual machines belonging to 
the same application (Breitgand & Epstein, 2011; Jayasinghe et al., 2011) 
 
Objectives 
 
Optimizing energy consumption is the main objective in most works (Ghribi et al., 2013; Beloglazov et al., 2012) However, 
there are differences in the studies that model energy consumption objectives. Several works consider the number of active 
physical machines as the main factor of energy consumption (Beloglazov & Buyya, 2010). Aside from energy usage, another 
goal in some projects is to reduce the number of overloaded physical equipment due to the performance loss that overloads 
cause (Beloglazov & Buyya, 2012). The cost of virtual machine migration was also included in several research (Wood et 
al., 2009). 
 
3. Problem Formulation and Methodology 
 

3.1 Virtual Machine Placement Problem  

VMP is a process of mapping VMs onto a set of PMs in a data center to minimize total power consumption and maximize 
resource utilization. The VMP is an NP-hard problem due to its complexity and capacity constraints and the multiple 
candidate assignments of VMs to PMs. The VMP problem can be formulated as an optimization problem to find optimal 
solutions. There can be many objectives with the study of VMP. In this paper, the optimization goal is to minimize energy 
consumption by satisfying the given constraints. The VMP problem is formulated as a bin packing problem. The general 
bin problem is summarized as follows, given a set of indivisible items. Each item has certain weights and a set of bins with 
variable sizes. The objective is to pack all items into many bins such that the number of used bins is minimized. In this 
paper, the VMP problem is addressed as a bin packing problem and the problem formulation is like the problem presented 
in (Abohamama & Hamouda, 2020). 
  
In this research, physical machines are represented as a resource. Consider that there are ‘M’ VMs and ‘N’ PMs. It is 
assumed that the total demand of all the VMs is less than the total capacity of the PMs. The main objective is to minimize 
the energy consumption of PMs. The constraints are as follows, 
 
• Each virtual machine must be assigned to exactly one physical machine.   
• Each physical machine must have enough resources for the assigned virtual machine. 
 
The VMP problem can be formulated as follows, 
 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥 = 𝑦 × 𝑃 − 𝑃 × 𝑢𝑡 + 𝑃   

(1) 

where, 
i ∈{1, 2, ... , M}, and j ∈ {1, 2, ... , N}. 
 𝑓(𝑥) is the total power consumption of the used physical machines. 𝑦j is a binary variable that indicates if 𝑃𝐻j contains virtual machines or not. 𝑃jbusy  is the maximum power consumption of physical machine 𝑃𝐻j. 𝑃jidle  is the minimum power consumption of physical machine 𝑃𝐻j. 
(as suggested in (Beloglazov et al., 2012), 𝑃  ≈ 0.6 ∗ 𝑃 ). 
utjcpu is the CPU utilization ratio of physical machine 𝑃𝐻j.   
utjcpu is formulated as follows:  
 𝑢𝑡 =    𝑥 × 𝑉𝑃     

(2) 

xij is a binary variable that indicates if V𝑀i is assigned to 𝑃𝐻j or not,  𝑉 is the CPU demands of virtual machine 𝑉𝑀𝑖 
Pcpuj is the CPU capacity of physical machine 𝑃𝐻j  
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3.2 Harmony Search Algorithm for VMP 

Harmony search (HS) is a meta-heuristic search algorithm that tries to mimic the improvisation process of musicians in 
finding a pleasing harmony. In recent years, due to its advantages, HS has received significant attention by researchers HSA 
is simple to use, quickly converges to the best solution, and produces a good enough solution in a reasonable amount of 
time. The merits of the HS algorithm have led to its application to optimization problems of different engineering areas 
(Lee et al., 2005; Fesanghary et al., 2009). In literature, HS has shown promising performance in solving difficult 
optimization problems and different versions of this algorithm have been developed (Mahdavi et al., 2007; Omran & 
Mahdavi, 2008). In this section, the basic HS algorithms and proposed variations for solving VMP are presented.  
Harmony search algorithm steps are as follows, 
 

• Harmony search uses some parameters to develop from dissonance music to harmony. These parameters comprise 
HMCR and PAR (Yun, 2021). The algorithm initializes algorithm specific parameters- Harmony Memory Size, 
Harmony Memory Considering Rate (HMCR) and Pitch Adjusting Rate (PAR).   
      

Harmony Memory Considering Rate (HMCR) - which is the probability factor and range between 0 ≤ HMCR ≤ 1 
Pitch Adjusting Rate PAR which is also the probability factor and range between (0 ≤ PAR ≤ 1) 

 
• Generate random vectors or harmonies as many as Harmony Memory Size (HMS) and save them in the Harmony 

Memory (HM). 
• Generate new harmonies by considering HMCR and PAR and check if the new HM is better than the saved one and 

update the HM. 
• Repeat this process until the stopping condition (Like the maximum number of iterations) satisfies. 
 

The sample solution representation used for solving the virtual machine placement problem is shown in figure 1. The 
symbols “VM” and “PM” are virtual machine and physical machine respectively. One-dimensional array represents the 
solution. Size of the solution depends on the number of virtual machines.  

VM1 VM2 VM3 VM4 VM5 VM6  VM7  VM8 
PM1 PM3 PM1 PM3 PM3 PM2 PM1 PM3 

 

                          Fig. 1. Solution representation 
 
 Algorithm 1: Pseudocode for the HSA with static PAR 
 
Input: no_vm, no_pm ,vm_cpu, pm_cpu, PAR, max _itr, HMS, HMCR 
Output: Minimum fitness value(energy)  
Initialize 
Initialize vm, pm instance  
Initialize harmony memory HM with HMS random solutions 
Procedure 
Begin 
   while current_iteration <max _itr  do 
      while current_hm ≤ HMS do 
         while current_vm ≤ number_of_vm do 
             if (rand() <HMCR) 
                  d =current_hm; 
                if (rand() < par) 
                    while i < number_of_vm 
                        temp_HM[i] = HM[d][i]     
                     od 
                    temp_HM[current_vm] = rand() % number_of_pm; 
                    fitness= calculate_fitness(temp_HM) 

if fitness < calculate_fitness(HM[current_vm]) 
    HM[current_vm] = temp_HM[current_vm] 

                    fi 
               fi                                                           
            fi 
             get_min_fitness(temp_HM[current_vm]) 
         od 

 od 
   od 

  end 
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3.2.1 HSA with Static PAR values 
Performance of many heuristic algorithms are influenced by algorithmic specific parameters. Exploration and exploitation 
strongly influenced by algorithmic specific parameters. For harmony search algorithms, HMCR and PAR values are crucial 
for fine-tuning the results and modifying the algorithms convergence to achieve the best answer. PAR is most significant 
to fine tune HSA. The probability factor PAR is a number that ranges from 0 to 1. In the basic experimental work, different 
PAR values are tested to analyze the performance of HSA. PAR values of 0.9, 0.7, 0.5, 0.3, and 0.1 are used in execution. 
The same initialized PAR value is used till the termination criteria is satisfied.   

3.2.2 HSA with Adaptive PAR  

 HM diversity influences the value of PAR. In HSA with adaptive PAR, the PAR values are modified after each iteration. 
This study presents four methods for calculating adaptive PAR values. Three adaptive PAR strategies are taken from 
literature. The details of adaptive PAR strategies are as given below. Fig. 2 shows the changes of PAR values with respect 
to iterations. 

 Strategy 1: Eq. (3) is used to modify the value of PAR (Mahdavi et al., 2007). PAR strategy is increasing. The parameters 
PARmax and PARmin are set to 1.0 and 0.45, respectively. 
 𝑃𝐴𝑅 = 𝑃𝐴𝑅 + 𝑃𝐴𝑅 − 𝑃𝐴𝑅𝑁𝐼 × 𝑔𝑛   (3) 

Strategy 2: Eq. (4) is used to modify the value of PAR (Mahdavi et al., 2007). It is increasing PAR strategy. The parameters 
PARmax and PARmin are set to 0.5 and 0.1, respectively. 
 𝑃𝐴𝑅 = 𝑃𝐴𝑅 + 𝑃𝐴𝑅 + 𝑃𝐴𝑅 − 𝑃𝐴𝑅𝑁𝐼 × 𝑔𝑛   (4) 

 
Strategy 3: Eq. (5) is used to modify the value of PAR. It is decreasing PAR strategy. The parameters PARmax and PARmin 
are set to 1.0 and 0.85, respectively. 
 𝑃𝐴𝑅 = 2 × 𝑃𝐴𝑅 − 𝑃𝐴𝑅 − 𝑃𝐴𝑅𝑁𝐼 × 𝑔𝑛 2 (5) 

Strategy 4: Eq. (6) is used to modify the value of PAR (Adamuthe & Nitave, 2020). It is decreasing PAR strategy. The 
parameters PARmax and PARmin are set to 1.0 and 0.85, respectively. 
 𝑃𝐴𝑅 = 𝑃𝐴𝑅 − 𝑃𝐴𝑅 − 𝑃𝐴𝑅 − 𝑃𝐴𝑅𝑁𝐼 × 𝑔𝑛  (6) 

 
 

   Fig. 2. Adaptive PAR strategies- change in PAR values          
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3.2.3 Hybrid Harmony Search Algorithms 
 
In literature, local search algorithms are investigated for solving different optimization problems. Local search can be used 
to solve issues involving maximizing a criterion among a set of potential solutions. In this paper, we are using a local search 
approach to improve the exploitation ability of harmony search algorithms. Harmony search is hybridized with simulated 
annealing (SA) which is a probabilistic method for estimating a function’s global optimum. The algorithm's name originates 
from metallurgy's annealing process, which involves heating and cooling a material to increase the size of its crystals and 
remove flaws.  
 
Algorithm 2. Pseudocode for the hybrid HSA with simulated annealing and local search 
 
Input: no_vm, no_pm ,vm_cpu, pm_cpu, PAR, max _itr, HMS, HMCR 
Output: Minimum fitness value(energy)  
Initialize 
Initialize vm, pm instance  
Initialize harmony memory HM with HMS random solutions 
Initialize PAR with best adaptive PAR strategy 
Initialize the Temperature (T) for the calculation 
Procedure 
Begin 
   while current_iteration <max _itr  do 
      while current_hm ≤ HMS do 
         while current_vm ≤ number_of_vm do 
            if (rand() <HMCR) 
                  d =current_hm; 
           if (rand() < par) 
                   while i < number_of_vm 
                    temp_HM[i] = HM[d][i]     
                     od 
                    while i< number_of_vm 
                   temp_HM[current_vm] = rand() % number_of_pm; 
                   fitness= calculate_fitness(temp_HM) 
                        if fitness < calculate_fitness(HM[current_vm]) 
                HM[current_vm] = temp_HM[current_vm] 
                        else 
                            ∆=-(HM[current_vm]-fitness) 
                            result=e^(∆/T)  

 if(rand1<result) 
                            HM[current_vm] = temp_HM[current_vm] 
                              update Tempreture (T) 

 fi 
                       fi 
                  od 
               fi                                                           
            fi 
              get_min_fitness(temp_HM[current_vm]) 
         od 
      od 
   od 
end 

4. Results and Analysis  

4.1 Simulation details 
This section presents the simulation details for the investigation and different data sets of virtual machine placement 
problems. The evaluation of our proposed algorithm is performed through different sets of experiments in a simulated 
environment. Datasets generation programs are written to generate the datasets for the experimental evaluation. We 
developed a python program that can randomly generate a data set for the problems of different characteristics. The datasets 
have been simulated with heterogeneous types of PMs and VMs. The maximum number of VMs and PMs examined is 600 
and 450, respectively. In this study, both virtual machines and physical machines are represented by the most representative 
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resources- the CPU. Total 15 datasets are generated with normal distribution by considering VMs CPU values between 50 
and 150. We have categories them as small, medium, and large data sets to the number of virtual and physical machines. 
The VM resources are generated by satisfying the constraint of having lower values of vcpu than the available capacities of 
Pcpu.  The first data generator program created inputs by random distribution and generated random CPU values of virtual 
machines in a specified range. The second data generator program created inputs by a normal distribution and distributed 
virtual machines required CPU values normally. The values of a few parameters are kept fixed as per standards. Table 1 
presents the parameter values for dataset generation. Table 2 presents type of method of generation of 15 dataset instances. 
 
Table 1  
Specifications for VM and PM 

PM CPU  1000 (MIPS) 
VM CPU range 50-150 (In MIPS) 
PM CPU at busy state  250 (MIPS) 

 
Table 2  
Datasets 

Dataset No. PM:VM  Method of generation Small/medium/large 
1 35:50 Random  Small 
2 40:100 Random  Small 
3 50:120 Random  Small 
4 70:150 Random Small 
5 100:200 Random Medium 
6 150:200 Normal  Medium  
7 150:300 Normal Medium 
8 200:300 Normal Medium 
9 250:300 Normal Medium 
10 290:400 Normal Medium 
11 300:450 Normal Medium 
12 350:500 Normal Large 
13 400:500 Normal Large 
14 450:600 Normal Large 
15 500:700 Normal Large 

 
For experimentation, we assumed homogeneous physical machines and heterogeneous virtual machines. Number of 
physical machines, number of virtual machines, HMCR, PAR, number of iterations, harmony memory size, physical 
machines CPU value at busy state are passed as input to the programs. The input file for each dataset contains the following 
information: Harmony memory size, HMCR and PAR values, number of iterations considered, number of physical and 
virtual machines and their required CPU values, and Pbusy CPU. 
 

Sample Input file 

300  - Harmony Memory 
0.9     HMCR 
0.3     PAR 
100    Number of iterations  
 
50     Number of virtual machine 
…     CPU values of 50 virtual machine 
 
35    Number of the physical machine  
…..  CPU values of 35 physical machine 
…… Pbusy values of the physical machine 

The proposed harmony search algorithm variations are implemented using the ‘C++’ programming language. The programs 
are run on a computer with an Intel Core i5-A515-51G processor running at 3.4 GHz and 8 GB of RAM.  

4.2. Comparison of HSA with static PAR values  
 
We examined performance of harmony search algorithm with five different PAR values. The PAR values tested from the 
sets {0.9, 0.7, 0.5, 03, 01}. We examined each static PAR value on 15 datasets.  
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Fig. 3.  Instance with 35 PM and 50 VM  

 

Fig. 4. Instance with 50 PM and 120 VM 

Fig. 3 shows that the performance of harmony search algorithms for all tested PAR values except 0.5 is similar for virtual 
machine placement instances with 35 PM and 50 PM. HSA with a 0.3 PAR value shows rapid convergence towards the 
optimal solution. Fig. 4 shows that for VMP instances with 50 PM and 120 VM, 0.3 PAR gives the best results and has a 
faster convergence rate than the others. The HSA with 0.5 and 0.7 converged to the same fitness value. HSA with PAR 0.9 
and PAR 0.1 converged to the same value as well.  
 

 

Fig. 5.  Instance with 100 PM and 200 VM 

 

Fig. 6.  Instance with 200 PM and 300 VM 

Fig. 5 shows that HSA with 0.3 and 0.7 PAR gives the same optimal results for VMP instances with 100 PM and 200 VM. 
PAR value 0.7 has shown fast convergence and 0.3 is gradually decreasing with slower convergence than 0.7. Figs. (6-8) 
show the results for medium and large datasets. Results show that PAR has a strong impact in early iterations. 

 

Fig. 7.  Instance with 300 PM and 450 VM 

 

Fig. 8.  Instance with 500 PM and 700 VM 
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Results show that performance of the harmony search algorithm changes with different PAR values. Harmony search 
algorithm with 0.3 PAR gives better results than other PAR values for large, medium, and small instances. Effect of PAR 
values on different instances is different.  
  
4.3. HSA with Adaptive Parameter setting 
 
 Performance of four adaptive PAR strategies for HS algorithms are tested using 15 different instances. Two approaches 
increase PAR with increase in iterations. Table 3 presents the comparison of results obtained from the harmony search 
algorithm with static and adaptive PAR. The comparison was made with the best results obtained with static PAR and 
adaptive PAR strategy. Adaptive PAR gives better results for 60 percent of the datasets. Adaptive strategy gives better 
results for all small datasets than static PAR. From an experimentation view, it is difficult to test HSA with PAR values 
ranging from 0 to 1. Adaptive strategy is found better to achieve optimal or near to optimal solution to a variety of instances.  
 
Table 3  
Comparison of HSA with static and adaptive PAR 

Dataset No. Small/medium/large Best results with static PAR from 
{0.1, 0.3, 0.5, 0.7, 0.9} 

Adaptive PAR 

1 Small 2682 2532 
2 Small 4723 4573 
3 Small 5851 5701 
4 Small 7661 7511 
5 Medium 10348 10279 
6 Medium  13601 13751 
7 Medium 63302 65102 
8 Medium 11926 11925 
9 Medium 17175 16725 
10 Medium 22681 23431 
11 Medium 25650 25350 
12 Large 28884 29334 
13 Large 29184 29484 
14 Large 34957 35107 
15 Large 35707 28132 

 
Fig. 9 shows that all adaptive strategies work well for small instances. Fig. 10 shows that strategy 4 has no improvement 
for the first 60 iterations followed by rapid improvement. The convergence pattern of HSA with strategy 4 is strange for 
this instance. The same pattern is seen with other instances 200 PM & 300 VM and 300 PM & 450 VM. Fig. 11 shows that 
strategy 3 and 4 have a fast convergence towards the optimal value.  For small, medium, and large data sets, the harmony 
search algorithm with decreasing PAR (strategy 3) is found to be better than other strategies. 
 

  

Fig. 9. Instance with 35 PM and 50 VM Fig. 10. Instance with 50 PM and 120 VM 
  

Fig. 11. Instance with 100 PM and 200 VM Fig. 12. Instance with 200 PM and 300 VM 
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Fig. 13. Instance with 300 PM and 450 VM Fig. 14. Instance with 500 PM and 700 VM 
 

4.4. Performance of hybrid Harmony search algorithm (simulated annealing, local search) 
The performance of the HSA with simulated annealing compared to the earlier adaptive PAR strategies with small, medium 
and large instances. Hybrid HSA with simulated annealing gives better results than HSA with adaptive PAR for 60 percent 
of the datasets.  
 

  

Fig. 15. Instance with 35 PM and 50 VM Fig. 16. Instance with 50 PM and 120 VM 
 

  

Fig. 17. Instance with 100 PM and 200 VM Fig. 18. Instance with 200 PM and 300 VM 
 
 
Fig. 15 shows that hybrid HSA with local search has better results than adaptive HSA and hybrid HS with SA. Performance 
of all three algorithms is same for instance with 50 PM and 120 VM. For sample two medium datasets as shown in figure 
19 and 20, hybrid HS with local search shows better results and fast convergence. Performance of the other two HS 
algorithms is similar to each other. Table 4 presents the comparison of results obtained by static HAS, HSA with adaptive 
PAR and hybrid HSA. Hybrid HS with SA and local search shows faster convergence in the early stage than other variations.  
Hybrid HS with SA and local search gives better results for 80 percent of the datasets than the other HS variations. 
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Fig. 19. Instance with 300 PM and 450 VM Fig. 20. Instance with 500 PM and 700 VM 
 
 
Table 4  
Comparison of all variations of HSA  

Dataset No. Small/medium
/large 

Best results with static PAR 
from {0.1, 0.3, 0.5, 0.7, 0.9} 

HSA with 
Adaptive 
PAR 

Hybrid HSA (HS+SA)  
with adaptive strategy 3 

Hybrid HSA (HS+SA+LS)   with 
adaptive strategy 3 

1 Small 2682 2532 2472 2381 
2 Small 4723 4573 4480 4475 
3 Small 5851 5701 5845 5845 
4 Small 7661 7511 7511 7452 
5 Medium 10348 10279 10336 10145 
6 Medium  13601 13751 13601 13235 
7 Medium 63302 65102 62548 62210 
8 Medium 11926 11925 11925 11775 
9 Medium 17175 16725 17325 16525 
10 Medium 22681 23431 22981 21002 
11 Medium 25650 25350 25200 24006 
12 Large 28884 29334 29034 28569 
13 Large 29184 29484 28885 28230 
14 Large 34957 35107 34127 34001 
15 Large 35707 28132 34956 34122 

 
5. Conclusions 
 
This paper has presented a harmony search algorithm for solving virtual machine placement problems. The main objective 
is to minimize the energy consumption in cloud data centers. The problem formulation considered the CPU requirements 
from a virtual machine and physical machine with given constraints. The aim is to minimize energy consumption of cloud 
data centers with satisfying given constraints.  
  
Random and normal distribution method is used to generate 15 dataset instances of virtual machine placement problem. 
The dataset is categorized as small, medium and large instances with respect to the number of virtual machines and physical 
machines in the instance. 
  
The paper presents results of harmony search algorithm, adaptive HSA and two hybrid variations of HSA. Results of HSA 
with different PAR values are presented. Results of four PAR adaptive strategies are presented. The HS algorithm is 
hybridized with simulated annealing and local search algorithms. We have observed that with specific values of PAR the 
harmony search algorithm gives better results and helps to optimize energy. For all datasets PAR value 0.3 shows better 
results than other tested values.  Adaptive PAR gives better results than static PAR for 60 percent of the datasets. Adaptive 
strategy 3 performed better than the other tested strategies. Hybrid HS with simulated annealing gives better results than 
adaptive PAR for 60 percent of datasets. Hybrid HS with simulated annealing and local search performs better results than 
other variations for 80 percent of the datasets.   
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