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 The multiple travelling salesman problem (MTSP) is one of the widely studied combinatorial 
optimization problems with various theoretical and practical applications. However, most of the 
studies intended to deal with classical MTSP, very limited attention has been given to an open 
multiple travelling salesman problem and its variants. In this paper, an open multiple travelling 
salesman problem with load balancing constraint (OMTSPLB) is addressed. The OMTSPLB 
differs from the conventional MTSP, in which all the salesmen start from the central depot and 
need not come back to it after visiting the given number of cities by accomplishing the load 
balance constraint, which helps in fairly distributing the task among all salesmen. The problem 
aims to minimize the overall traversal distance/cost for operating open tours subject to the load 
balancing constraint.  A zero-one integer linear programming (0-1 ILP) model and an efficient 
metaheuristic genetic algorithm (GA), is established for the OMTSPLB. Since no existing study 
on OMTSPLB, the proposed GA is tested on the relaxed version of the present model, 
comparative results are reported. The comparative results show that the proposed GA is 
competent over the existing algorithms. Furthermore, extensive experiments are carried out on 
OMTSPLB and the results show that proposed GA can find the global solution effectively. 
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1. Introduction 
 

Travelling salesman problem (TSP) is a typical NP problem arise in combinatorial optimization (Garey and Johnson, 1979), 
whose objective is to find the optimal salesman’s tour such that the salesman visits all given cities only once, and return to 
the starting city at the end. Several practical problems can be designed as TSP after transformation, such as network 
communication (Bharath-Kumar & Jaffe, 1983), logistics distribution (Liu & Zhang, 2014), route planning (Ghadiry et al., 
2015). From a graph theory viewpoint, the principal task of TSP is to obtain a least Hamiltonian cycle.  The multiple 
travelling salesman problem (MTSP) is a generalized version of classical TSP, in which m salesman instead of single 
salesman are involved to cover n(>m) cities. The MTSP looks for the splitting of n  cities into m salesman clusters, so that 
each cluster of cities is covered by precisely one salesman, each city is covered once and only once and the overall distance 
covered by m salesman is minimized. The MTSP is more difficult than the TSP as it needs to find the optimal allocation of 
the set of the cities to each salesman.  Several practical applications are formulated as the MTSP, which emerge in the areas 
of industry, business and engineering. To mention, job scheduling problem (Carter and Ragsdale, 2002), vehicle scheduling 
problem (VSP) (Carter & Ragsdale, 2006), Printing Press problem (Gorenstein, 1970), Crew scheduling and School bus 
routing (Király & Abonyi, 2011), surveying networks through Global navigation satellite system (GNSS) (Saleh & 
Chelouah, 2004), Workload balance (Okonjo-Adigwe, 1988) etc. Due to its wide applicability, the MTSP has been 
extensively studied and addressed several variants. Some of the variants namely, MTSP with fixed charges (Hong and 
Padberg, 1977), time windows (Kim and Park, 2004), Pickup and delivery (Wang and Regan, 2002), truncated MTSP 
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(Bhavani, and Murthy, 2006), Multi-depots (Benevent & Martinez, 2013), Open close (Thenepalle & Singamsetty, 2019).  
Due to the NP-hard nature of the MTSP, it is required to employ heuristic techniques to tackle problems of larger size. Some 
of the heuristic techniques for MTSP, which were developed by adopting biological features or natural phenomena 
including,  Evolutionary approach (Sofge et al. 2002), Modified imperialist competitive algorithm (MICA) (Larki and 
Yousefikhoshbakht, 2014), Ant colony optimization (ACO) (Yousefikhoshbakht, 2013), Neural networks (Modares et al. 
1999), Particle swarm optimization (PSO) (Yan et al., 2012), Genetic algorithm (GA) (Király & Abonyi, 2011) to name but 
a few. However, several heuristics or metaheuristics were developed; each one has their complications. For instance, ACO 
is prone to have slower convergence rate, thus computationally expensive, PSO is likely to be stuck in local optimization 
and GA tends to have premature convergence and highly depends on the initial population. Although GA has its drawbacks, 
it is proven very effective and extensively used for solving MTSP (Xu et al. 2018). To review its progress Bailey (1967), 
the first who discussed the concept of GA and then Holland, did a systematic study on the mechanism of the survival of the 
fittest in 1975. Since then, the literature witnessed significant advancements of GA for solving MTSP and its variants. To 
mention the earlier works, Tang et al. (2000) suggested one-chromosome representation for the MTSP and used it to tackle 
hot rolling production scheduling problems. Carter and Ragsdale (2006) developed a GA that employs a two-part 
chromosome representation and relevant genetic operators. Brown et al. (2007) developed a grouping genetic algorithm 
(GGA) with one-chromosome and two-chromosome representations to solve the MTSP.   Singh and Baghel (2009) then 
proposed a refined version of GGA which involves a steady-state population replacement model. Király and Abonyi (2011) 
studied MTSP and proposed a novel chromosome representation based GA.  Yuan et al. (2013) introduced a new two-part 
chromosome representation for the GA to get near-optimal solutions of MTSP. However, this technique is affected by the 
development of chromosome length and the end solution. Kaliaperumal et al. (2015) proposed the improved two-part 
chromosome representation based GA to tackle MTSP. However, this technique allocates a distinct quantity of cities for 
each salesman, and thus, this study did not effectively address MTSP with load balancing constraint.  Alves and Lopes 
(2015) addressed the MTSP with workload balance, developed GA to find optimal traversal distance by reducing the 
deviation among the distances covered by each salesman.   Xu et al. (2018) proposed the two-phase heuristic algorithm 
(TPHA) which combines K-means and modified GA for solving MTSP subject to the workload balance. Lo et al. (2018) 
studied MTSP, proposed the GA in which two new local operators Branch and Bound and cross elimination effectively 
combined to find high-quality solutions within a short time.   Recently, Harrath et al. (2019) studied MTSP, developed a 
hybrid algorithm, which integrates ACO, 2-Opt based GA (AC2OptGA) and showed that this algorithm outperforms other 
state-of-art techniques. Shuai et al. (2019) addressed a bi-objective MTSP model and suggested an evolutionary algorithm 
NSGA-II, which effectively jumps from the local optimum.  A comparative study of various crossover operators of GA for 
MTSP can be found in Al-Omeer and Ahmed (2019). All these studies have inspired us to develop new GA for the 
OMTSPLB, which can find the best solutions within a short time. Based on the type of tours, the classical MTSP can be 
categorized into closed MTSP or simply MTSP and open MTSP. The closed MTSP means that a set of salesman starts from 
the central depot/starting city and needs to come back to the central depot after visiting the given cities, whereas the open 
MTSP (OMTSP) finds a set of Hamiltonian paths for salesman such that the overall traversal distance/cost is minimum. For 
instance, Fig. 1 illustrates a scenario defined by 3 salesman and 11 cities including depot city. Here, node 0 is the central 
depot from which all the salesman has to start visiting the cities and need not return back to it after visiting them. As shown 
in Fig.1, salesman 1 visits three cities, salesman 2 covers five cities, whereas the salesman 3 visits only one city. Clearly, 
the salesman’s workload is not fairly distributed. As discussed above, the prime goal of OMTSP is to minimize the overall 
distance covered by all salesman, which results in an unbalanced workload model. Fig. 2 exhibits an appropriate arbitrary 
solution for OMTSP with workload balance. The main idea of load balancing is to fairly distribute the quantity of cities 
among all salesman. More precisely, if a problem is defined with m salesman and n cities, then the sufficient number of 

cities given for each salesman does not exceed 
1n

m
− 

  
 cities.  This constraint effectively controls the load balance in terms 

of cities allocation to each salesman. The present study addresses a new MTSP variant called open multiple travelling 
salesman problem with load balancing constraint (OMTSPLB). Inspired by the studied works cited above, GA is developed 
to solve the OMTSPLB.   
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Fig 1. An example solution of OMTSP without load 
balancing  

Fig 2. An example solution of OMTSP with load 
balancing 

2.  Problem Definition and Mathematical Formulation 
 
The OMTSPLB can be described as follows: Let G=G(E,V) be the complete graph, where the vertex set 

1 2 3{ , , ,..., }nV v v v v= denotes a set of n  cities including one central depot /starting city 1( )v and the edge set 

{( , ) / , ; , 1,2,..., ; }i j i jE v v v v V i j n i j= ∈ = ≠ be the set of 2n n− edges.  Each vertex iv  is specified with a position 

( , )i ix y  in Cartesian coordinate system. Each edge ( , )i jv v is given with a distance/cost ( ; , 0)ij ij ji ii ijd d d d d= = ∞ >
, which is the Euclidean distance between the cities i and j . Let K={1,…,m} be the set with m(m<n) salesman positioned at 
the starting city 1( ).v Each salesman starts from the starting city, takes a route and need not return to the starting city. Each 

city will be covered exactly once (except the starting city) by each salesman and each salesman can visit a maximum of  Q
1nQ

m
 −  =    

 cities to achieve the load balance. The problem OMTSPLB aims to find m sequences of Hamiltonian 

paths over G with least distance/ cost.  Here, the binary variable {0,1}k
ijx ∈ , such that 1k

ijx =  if the thk salesman visits 
thj  city from thi city, and 0,k

ijx = otherwise.  Here, an another binary variable {0,1}k
jy ∈ is introduced, such that 1k

jy =

, if the thk salesman visits thj city and 0k
jy = , otherwise. Note that in the present study the starting city 1( )v  is assumed 

as 1st city. The mathematical model for OMTSPLB is as follows:  
 
 

1 1 1
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; 1, 2,...,

n
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i

i
y Q k m

=

≤ =  
(7) 

+ subtour elimination constraints  (8) 

{0,1}; , 1, 2,..., & 1, 2,...,k
ijx i j n k m∈ = =  (9) 

 

In the above model, the objective function (1) represents that the overall cost/distance of open paths with respect 
to  salesman is minimum. Constraint (2) guarantees that any feasible solution should contain only  number of edges. 
Constraint set (3-4) assures that all the salesman has to start from the starting city (here it is assumed as 1) and no salesman 
is required to return back to it, respectively. Constraint set (5-6) indicates that a salesman enters each city precisely once 
and departs from each city at most once, respectively. Constraint (7) represents that the total cities covered by any salesman 
does not exceed a specific value, which maintains load balance. The sub-tours, which are formed between intermediate cites 
and not included starting cities, are prevented by the constraint (8).  Finally, Constraint (9) represents the binary variable 

{0,1}k
ijx ∈ , such that 1k

ijx =  if the thk salesman visits directly from thi  city to thj city, and 0,k
ijx = otherwise. 
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3. Genetic Algorithm  

In this section, first, the classical GA is described, and then the proposed algorithm is discussed in detail. The GA is one of 
the widely used metaheuristic algorithms in evolutionary computation research for solving combinatorial optimization 
problems. This algorithm is an adaptive searching technique based on the survival of the fittest strategy, was first discussed 
by Holland in 1975.  In its nature, the GA starts with a set of initial solutions called the initial population, also referred to 
as chromosomes, in which all the genetic data is stored. Each numeral within the chromosome is treated as a gene. Further, 
a fitness value is determined to evaluate the performance of a chromosome.  Each time, two chromosomes, called parent 
chromosomes are selected from the population randomly, which is proportionate to their fitness value. Then, the two 
chromosomes crossover to generate two new chromosomes for the subsequent generation. These new chromosomes will 
swap old ones if they have superior fitness values. Then, a mutation operation is applied to the newly produced 
chromosomes to maintain the diversity of the population. Repeat selection, crossover, and mutation processes to generate 
more chromosomes that are new until the newly generated population size equals to the old one.  The iteration then starts 
with the new population. Since better chromosomes have a higher probability to be nominated for crossover and the new 
chromosomes generated to transmit the characteristics of their parent chromosomes. The search process continues for many 
generations until the predetermined criteria are met. For the OMTSPLB, the fitness value represents the overall traversal 
distance of all the salesmen. Hence, the lesser the fitness value results in the optimal/suboptimal solution.             

3.1. Proposed GA 
 
To find optimal/suboptimal solution to the OMTSPLB via GA, the key elements such as chromosome representation, 
population initialization, estimation of fitness value, selection, crossover, mutation operators and GA parameters are 
required. Different GA techniques might include distinct encoding, crossover and mutation operators, which results in 
divergence of the search process. Thus, it is essential to remodel the above operations to confirm that the optimal/suboptimal 
solution is indeed achieved.  Below are the key elements in the proposed GA for OMTSPLB.  
 
3.1.1. Chromosome Representation 

An MTSP solution can be represented into a chromosome in several ways, including one chromosome (Tang et al., 2000), 
two chromosomes (Malmborg, 1996)), two-part chromosome (Carter & Ragsdale, 2006) etc.  However, several studies 
include two-part chromosome strategy as it does the best in both solution quality and computational speed aspects compared 
to the former ones in solving MTSP and its variants. This inspires to adopt the two-part chromosome representation in this 
study. The name “two-part chromosome representation” is due to its structure, which has two parts. The initial part of the 
chromosome with length 1n −  represents a permutation vector of integers from 2 to n . The first 1n − genes represent 

1n − cities (without starting city) to be visited. The rest of the part with length m  has mgenes, and each gene is assigned 
with a value. The values assigned to these mgenes are constrained to be positive integers, which lies between 1 and Q . 
Thus, the workload balance can be indeed achieved. Further, the sum of all the values in part II must be equal to 1n − .  
Since all the salesmen must start from the central depot city (1, say) , to save the memory usage it is excluded within the 
chromosome. A two-part chromosome solution for OMTSPLB with 11 cities and 3 salesmen is demonstrated in Fig.3. In 
this example, the salesman 1 visits 4 cities, i.e. Depot (1) 4 6 7 2→ → → → . Salesman 2 visits 3 cities i.e.  
Depot (1) 11 3 5→ → →  and finally, Salesman 3 visits 3 cities i.e. Depot (1) 8 10 9→ → → . 

 
Fig 3.  Representation of two-part chromosome for a 11 city OMTSPLB with 3 salesman 

 
3.1.2. Initial Population Encoding 
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The efficiency of the GA certainly depends on the quality of the initial population. Therefore, it is inevitable to identify an 
appropriate encoding operator that decides the generation of the initial population. From the literature, it is evident that 
many GA techniques developed for MTSP and its variants, permutation encoding, are widely used to generate the initial 
population (Xu et al. (2018)). The chromosome representation in Fig. 3, specifies a single individual of the population called 
one of the solutions of the problem. The sequence of the integers are encoded into the genes, where each gene is associated 
with an integer also called a city. Thus, this kind of chromosome representation is so-called permutation encoding and the 
same is adopted in our study.  

3.1.3. Fitness Function 

The fitness function is used to compute individual chromosomes in the population. The selection strategy depends on the 
fitness value is an important step in GA. In particular, a chromosome with greater fitness value implies a better chance of 
being selected for the subsequent generation. In our study, the fitness function is assumed as the objective function specified 
by Eq. (1). Therefore, the chromosome corresponding solution with lesser distance/cost will possess a higher fitness value 
and thus have a greater genetic probability to be chosen.     

3.1.4. Selection Operator 

The selection operator is an essential step in the GA, as it affects its performance. In this article, the classical roulette wheel 
method is used as the selection operator of GA. This operator selects a chromosome from its population in a statistical 
fashion depending on its fitness value to enter into a reproducing pool. Those chromosomes closer to the solution have a 
better chance of being selected.  

3.1.5. Crossover Operator 

The crossover operator is again a key parameter, plays a significant role in GA efficiency and further helps to diversify the 
population. It is the process of mating/information sharing between two parent chromosomes. It combines the characteristics 
of two-parent chromosomes and produces two new chromosomes/offspring/child from them with the chance that good 
chromosomes may produce a superior child with best features. Several crossover operators have been developed for solving 
MTSP and its variants namely one and two-point crossover (Király and Abonyi (2011)), edge recombination crossover (Lo 
et al. (2018)), order crossover (Sedighpour et al. (2012)) etc. Recently, a multi-chromosome representation based modified 
distance preserving crossover operator is proposed (Singh et al. (2018)) for solving MTSP.  

In this paper, we have adopted the strategy as discussed by Singh et al. (2018) and proposed a two-part chromosome based 
crossover operator, which is shown in Fig. 4.  In this crossover, the first gene in part I of parent P1 is moved to the last gene 
in part I of child C2 and the last gene in part I of parent P1 is transferred to the first gene in part I of child C2. Similarly, the 
first gene in part I of parent P2 is copied into the last gene in part I of child C1 and the last gene in part I of parent P2 is 
copied in the first gene in part I of child C1. The rest of the genes transformed as shown in Fig. 4. Further, all the genes in 
part II of parents P1, P2 are copied as usual into genes in part II of child C2, C1, respectively.  For instance, in Fig. 5, the 
first gene in part I of parent chromosomes P1, P2 (i.e. 4, 2) are copied into the last gene in part I of child C2, C1, respectively. 
Similarly, the last gene in part I of parent chromosomes P1, P2 (i.e. 9, 8) are copied into the first gene in part I of child C2, 
C1, respectively. Rest of the genes are exchanged as per the algorithm given in Fig. 4.  Further, all the gene information 
(i.e. 4, 3, 3) in part II of parents P1, P2 are transformed into genes in part II of child C2, C1, respectively. The justification 
behind this crossover strategy depends on the idea that the city in optimal/suboptimal tours takes place in the same location. 
Thus, it helps with variability in the population.   
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Fig 4. Proposed crossover algorithm 

 
Fig 5.  Proposed crossover operator 

 

3.1.6. Mutation Operator 

Mutation operation is executed next to the crossover. The intention of mutation is to avoid the GA from being trapped in a 
local optimum and enhance the genetic variability of the population. This work utilizes the complex mutation operator, 
which comprises Swap, Reverse swap/Flip and Slide mechanisms. All these mutation operators are employed to find the 
optimal distance and reduce computational time.  With a mutation probability mP , a parent chromosome is chosen. For a 
swapping operation, two different positions are selected randomly from the parent chromosome; the genes of these two 
positions are interchanged. For a reverse swap operation, two different positions are chosen to describe segment, the genes 
between these positions are reversed. Similarly, for a slide operation, two distinct positions are selected (say,  thi  and thj
positions).  Now, the new offspring can be produced by removing the gene in thi  position and copy the same in thj  position 

of the parent chromosome. Thus, genes between thi  and thj positions will be decremented by one, i.e. the gene at 

( 1),( 2)i i+ +  positions will be moved to thi  and ( 1)thi + positions, respectively and so on. Similarly, the gene at thi  

position will be moved to thj position and the gene associated at thj  position should be moved to ( 1)thj − position. For 
the second part of the parent chromosome that constrains the total cities allotted for each salesman, the genes will be moved 
as usual to produce new offspring.  Examples for Swap, Reverse swap/Flip and Slide operations are illustrated in Figs. 6-8, 
respectively.   

 
Fig 6. Swap Operator 

 
Fig 7. Reverse Swap Operator 
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Fig 8. Slide Operator 

3.1.7. GA Parameters 

In addition to the key elements of GA discussed earlier, setting appropriate values to the parameters namely, size of the 
population, crossover probability rate, mutation probability rate and termination criteria also plays a vital role in the 
algorithm’s efficiency. These parameter values are based on the problem to be tackled. The Population size indicates the 
number of chromosomes in any one generation and in this study, it is considered sufficient as large as 100.  Crossover 
probability rate (Pc) tells how often a crossover operation will be executed. If no crossover operation is performed, more 
chances that produced offspring become a duplicate copy of the parent chromosome. When the crossover takes place, 
offspring are made with partial features of the parent chromosome. In this study, the crossover probability rate is fixed as 
0.85. Mutation probability rate (Pm) indicates how frequently the mutation operation is performed to the parts of the 
chromosome. This operator makes changes in the part of the chromosomes and thus maintains the diversity in the 
population.  Generally,   Pm lies between 0.001 and 0.1. To our study, it is considered as 0.01.  Finally, the termination 
criterion of the GA is assumed to be a maximum number of generations. 

4. Computational Results 

In this section, the computational results are presented to assess the efficiency of our proposed GA. For all experiments, the 
GA approach uses roulette wheel selection, modified distance-preserving crossover, complex mutation (Swap, Reverse 
Swap and Slide) operators, to produce new offspring in every generation. The proposed GA is coded in MATLAB R2017a 
on a PC with Intel Core CPU i3 2.00 GHz and 4GB of Ram with Windows 10 Pro 64 bit operating system.  Unlike the 
conventional TSP, no open benchmark instance is available to test OMTSPLB. Hence, the benchmark instances available 
in TSPLIB have been used. As there is no existing study on OMTSPLB, the comparison between the algorithms is not 
carried out. However, a comparative study on the relaxed version of the present model known as classical MTSP is 
performed. To assess the efficiency of proposed GA, a comparative study of our GA against the best-known results (BKS) 
and the new crossover and population generation based Genetic algorithm (GA*) proposed by Singh et al. (2018) for MTSP 
is performed.  The comparative results on twelve-benchmark instances of Carter & Ragsdale, (2006) is given in Table 1.  
The twelve benchmark instances including MTSP-51, MTSP-100, and MTSP-150 of size 51, 100, and 150 cities, 
respectively with a distinct number of salesmen are summarized in Table 1. For each instance, the average (Avg.), worst, 
and the best-found results over 10 independent runs are reported and compared with the best-known results of MTSP.  From 
the results, it is seen that our GA provides best results than the results of GA* for all the twelve instances. It is also evident 
that the worst solutions of our GA are better than the results of GA* for all the instances. Further, the proposed GA results 
coincide with the best-known results (BKS) for 9 instances (i.e. 1, 2, 3, 4, 6, 7, 9, 11 and 12). However, for the rest of the 
instances, the GA finds close results to the BKS. To assess the deviation, gap percentage (Gap1 %) is computed for each 
instance using the formula (10) where BKS is the best known solution available in the literature, best-found solution is the 
solution produced by the proposed GA for a particular instance. The Gap percentage computed is as high as -3.03%.  A 
negative value of gap percentage represents the BKS is better than the best-found solution. Further, the gap percentage 
(Gap2 %) is measured between BKS and GA* using the formula (11). The Gap percentage computed is as high as -75.09%.  
Figures 9-11 graphically compare the BKS, GA* and proposed GA on instances of Carter and Ragsdale, (2006).   The 
overall results have shown that the proposed GA is efficient and competent in solving MTSP. Furthermore, the OMTSPLB 
is solved on the same test instances and the best-found results are reported in column 9 of Table 1. It is seen that most of 
the best-found results of OMTSPLB are less than the BKS of MTSP. It is due to the number of edges present in OMTSPLB 
solution is less than the edges present in MTSP solution. From the results; it is evident that, as the number of salesmen 
increases, the overall distance has a trend of decreasing and the same has been demonstrated in Figs. 12-14.  

 

1% 100BKS Best found solutionGap
BKS

−= ×  

 

               (10) 
 

*2% 100BKS GAGap
BKS

−= ×  
               (11) 

 

                                                                 
To test the efficiency of OMTSPLB, a set of 19 benchmark instances have been considered. All these are all Euclidean 
distances, from which the symmetric distance matrix will be generated. Each instance with a distinct salesman (i.e. 
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m=2,…,10), and overall, 171 cases have been tested. The best-found results of OMTSPLB are presented in Table 2. The 
column Instance indicates the labels of the benchmark instances; column Size lists the size of the tested instances. The 
proposed GA solves all the given benchmark instances with the distinct salesman varying from 2 to 10. As presented in 
Table 2, it is seen that the results produced differ for each case. However, the obtained results are varied for each instance; 
there is no specific rule to find how many salesmen have to be used to get the best result. For instance, the result of gr96 
tried using 4 salesmen is the best of all the presented solutions for this benchmark instance. Similarly, of all the results of 
the instance rd100, the best one is the result corresponding to 10 salesmen. It is, however, a certainty that the topology of 
the particular problem influences the computational result with distinct numbers of salesmen. In addition, the last 
column  represents the mean computational time required to solve each instance with a distinct quantity of salesman. The 
mean time  (in seconds) shows that the proposed GA finds the best results quickly.     
 
Table 1  
Comparative results of the proposed GA with BKS and existing GA on Carter, & Ragsdale, (2006) Instances     

 
Instance n  m   BKS GA* Proposed GA OMTSPLB 

Solution 
Gap1 % Gap2 % 

Avg. Worst Best 
mtsp-51 51 3 424 460 428 446 424 413 0  -8.49 

51 5 460 499 463 474 460 439 0  -7.17 
51 10 568 669 586 602 568 468 0 -17.78 

mtsp-100 100 3 21,472 22,959 21648 22,091 21,472 22053 0  -6.92 
100 5 23,073 24,559 23,251 23,768 23,182 22448 -0.47  -6.44 
100 10 26,961 33,136 27,144 27,596 26,961 22587 0  -22.90 
100 20 38,245 62,963 38,396 42,502 38,245 22998 0  -64.63 

nmtsp-150 150 3 29,390 39,504 34,997 38,208 30,281 39953 -3.03  -34.41 
150 5 30,308 39,862 31,506 32,971 30,308 39993 0  -31.52 
150 10 35,510 50,892 36,633 40,898 35,802 40715 -0.82  -43.31 
150 20 44,697 77,668 46,866 47,182 44,697 42886 0  -73.76 
150 30 58,757 102880 61,428 69,361 58,757 43841 0  -75.09 

 

  
Fig 9. Comparison of minimum distance on mtsp-51 Fig 10. Comparison of minimum distance on mtsp-100 

  
Fig 11. Comparison of minimum distance on mtsp-150 Fig 12. BKS of MTSP Vs. best found solution of 

OMTSPLB on mtsp-51 

  
Fig 13. BKS of MTSP Vs. best found solution of 
OMTSPLB on mtsp-100 

Fig 14. BKS of MTSP Vs. best found solution  

of OMTSPLB on mtsp-150 
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Table 2  
Computational results of OMTSPLB 

 

Instance n  Number of Salesman T  
2m =  3m =  4m =  5m =  6m =  7m =  8m =  9m =  10m =  

att48 48 31873 32931 32830 34750 34830 35472 35292 36743 37510 21 
eil51 51 419 432 447 442 458 469 470 483 466 26 

berlin52 52 7364 7542 7501 7940 7828 7941 7937 7910 7985 28 
st70 70 712 723 689 682 708 695 701 721 705 34 
eil76 76 557 560 567 579 572 567 584 593 608 37 
pr76 76 112301 114728 112966 115899 119892 121205 121559 121432 125361 41 
gr96 96 533 567 526 559 566 560 579 573 564 44 
rat99 99 1335 1338 1338 1324 1322 1372 1370 1399 1421 42 
rd100 100 8447 8290 8404 8461 8521 8554 8398 8533 8169 56 
kroA100 100 23219 23630 22931 23676 23973 23376 23496 23417 24304 54 
kroB100 100 23517 23932 23240 23240 23426 23818 23788 23910 23852 58 
kroC100 100 21798 21237 21826 22098 22305 22332 22589 21468 22273 54 
kroD100 100 22100 22320 22745 23141 22625 23015 23423 22647 22890 61 
kroE100 100 22958 23197 23288 22801 23221 23206 23269 23332 23245 62 
lin105 105 15816 15447 15752 15206 15262 14889 15802 15523 15504 82 
pr107 107 37725 44164 42986 42259 41997 41572 41078 41534 41784 80 
pr124 124 59359 57594 63594 63634 62642 60278 62537 62630 63468 114 
bier127 127 121715 119617 119030 118800 120351 118321 119576 121445 120554 126 
Ch130 130 6416 6492 6524 6472 6626 6735 6696 6731 6564 131 

           
5. Conclusion 

This paper addresses a novel variant of MTSP called an open multiple travelling salesman problem with load balancing 
constraint (OMTSPLB), which finds a wide range of applications in outsourcing logistics distribution and transportation. 
The objective of this problem is to determine a set of m  Hamiltonian paths for m salesman with an overall minimum 
distance/cost subject to the load balance.  A new two-part chromosome representation based crossover and mixed strategy 
mutation (Swap, Reverse Swap/Flip and Slide) operator is used in the genetic algorithm (GA) for solving OMTSPLB. 
Proposed GA of complex mutation provides a wide variability in the population and has a less possibility of occurring 
redundant members in the search space. The comparative results have shown that the proposed GA is efficient and 
competent in solving classical MTSP. The overall computational results showed that the proposed GA certainly well 
addresses the number of cities assigned to each salesman as well as minimizes the total traversal distance/cost. Further, the 
best-found solutions for a set of 19 benchmark instances with distinct salesmen (for 2,3,..10)m =  have been provided, 
which may be used for future comparative study.   
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