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 This research deals with a multi-job Integer batch scheduling problem on a single machine with 
different due dates. Every job demanded one or more parts, and the single machine processed 
the job into a number of batches. The objective is to minimize total actual flow time, defined as 
the total flow time of all jobs starting from the arrival to the common due date. The decisions are 
to determine the sequence of jobs, the number of batches, batch size, and sequence of all batches 
on a single machine. This research proposes three algorithms, developed based on the longest 
due date rule (The P1-LDD Algorithm), the adjacent pairwise interchange method (The P2-API 
Algorithm), and the permutation method (The P3-PM Algorithm). The numerical experience 
shows that the three algorithms produce an outstanding solution. The P1-LDD Algorithm fits to 
solve a simple problem. The P2-API Algorithm has superior to solve a big complicated problem. 
The P3-PM Algorithm has the best performance to solve small complicated problems. 
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1. Introduction 

We discuss a batch scheduling of multi-job with multiple delivery dates on a single machine where every job consists of a 
number of parts along with a respective due date. The objective is to minimize the total actual flow time, defined by Halim 
et al. (1994) as the time interval of all parts on all batches to flow on the shop, starting from when that arrives until the due 
date. This research is relevant to the company that adopts the Just-In-Time system where the company can manage the 
arrival of the part when the machine is already to process it. This problem is categorized as the serial batch problem where 
the length of a batch is equal to the sum of processing time of part in it, and common setup time is needed before the machine 
processes a new batch (Baptiste, 2000). The motivation of this research is to solve the problem in an Indonesian plastic 
company. A single machine, the so-called extruder machine, is assigned to process a number of jobs where every job consists 
of a number of units with a respective due date. We identify that the processing time of jobs is different from each other. 
Since the warehouse capacity is limited, the companies manage the arrival of material to be a number of batches. The 
company should minimize the time of jobs flowing in the shop and keep on-time delivery (It is the same as minimizing the 
total actual flow time). The problems determine the number of batches for every job, the arrival time of the baches, the 
batch sizes, the schedule of the resulting batches, and the schedule of the jobs. 

2. Literatur Review 
 

Halim et al. (1994) have discussed batch scheduling with multi-jobs and delivery of all completed jobs at a common due 
date. This research assumes that the machine can process different parts in a batch and deliver all completed products at the 
common due date. The researcher proposes some properties and algorithms to solve the problems with the objective is to 
minimize the total actual flow time. Hazir and Sidhoum (2014) also study the problem to minimize the sum of the weighted 
earliness and tardiness penalty and the setup cost to create a new batch. They assume that there are K planned customer 



  232

orders, which all orders ready to process by a single machine at time zero, and all completed jobs delivered on a common 
due date. They propose some properties to determine the optimal schedule and construct the optimal algorithm to solve the 
problem. In the literature of batch scheduling, there is a situation where a multi-job is scheduled on a single machine, and 
the completed job is delivered in a batch (batch delivery). Basir and Karimian (2018) have discussed that problem to 
minimize tardiness cost and delivery cost simultaneously. They assume that the company can control both delivery time 
and the quantity of product to the customer. Its decision could decrease the delay cost; however, it also increases the number 
of transportation. Researchers propose batch delivery to accommodate the trade-off between both tardiness cost and delivery 
cost. They construct a mixed-integer linear programming (MILP) model and solve it by the genetic algorithm. Another 
researcher, among of Yin et al. (2013), Rasti-Barzoki et al. (2013), Hamidinia et al. (2012) and Mazdeh et al. (2011) has 
discussed the similar problem using various objective and construct the solution by dynamic algorithm, branch and bound 
and Genetic Algorithm. Research on Yusriski et al. (2015a) studies a single machine batch scheduling problem with a 
common due date, especially on integer batch size cases. The model is similar to Hazir and Sidhum (2014); the difference 
is that research assumes the delivery of finished parts must coincide with the due date. The researchers adopt the backward 
approach to schedule the resulting batches, and using the objective the so-called total actual flow time, defined in Halim et 
al. (1994) as "the total of parts in all batches flowing on the shop start from that arrival to the common due date." The 
researcher solves the problem using the proposed algorithm and shows that the algorithm produces an optimal solution after 
comparing tests with an enumeration one. The reader can find similar research in Yusriski et al. (2015b), Yusriski et al. 
(2016), Yusriski et al. (2018), and Yusriski et al. (2019). 

The research on batch scheduling problems considering due date can be found in Xie and Wang (2014). A study by Xie and 
Wang (2014) discusses a single-machine scheduling problem with batch delivery. The researcher assumes that there are a 
number of jobs with identical processing times so that the machine can process and then deliver the completed jobs together 
as a batch. The problem is determining the sequencing of the jobs and the batch sizes (the set of jobs contained in every 
batch) to minimize the sum of total weighted earliness, tardiness, holding, due date, and delivery costs. The researcher 
proposes an algorithm developed based on the dynamic programming approach and proved that the optimal sequence is 
found by batch-LPT order. They also show that the complexity of the algorithm is O(n3). For a similar study, we refer the 
reader to the work of Prasetyaningsih et al. (2017) and Maulidya et al. (2019). Mohri et al. (2011) have studied a batch 
scheduling multi-job with multi due dates. The research is motivated by a real problem in the food manufacturing industry, 
which is bread production. They describe the situation where the factory makes a number of bread batches and delivers 
them to several stores with different due dates. Since the bread has expired so the quality of bread should deteriorate along 
with time, the flow time and delivery coincide at the due dates are very important. The researchers construct the algorithm 
and find the optimal solution to minimize the total flow time. Nurainun et al. (2016) have deals with batch scheduling on 
dynamic flow shop. In that research, the researcher considers the multi-item case. Albers and Bruker (1993), Ji et al. (2007) 
show that most of the batching problem is now polynomially solvable and some of the cases known as NP-Hard. Yet, the 
literature on this problem is small relatively.  

3. The Problem Formulation 
 

Let there be a number of jobs (𝐽 ,ℎ = 1,2,3, . . ,𝐾) ordered by the customer to be scheduling on a single machine. The 
processing time of every job is not identical (𝑡 ). Each order consist of a set of demand (𝑛 ) to be processed into a number 
of batches (𝑁 ) respectively. Hence, The batch sizes per jobs are (𝑄 , 𝑖 = 1,2,3, … ,𝑁 ). There is a common setup time (𝑠 ) before a new batch to be processed by the machine. Also, all completed products of 𝐽  must be delivered to the 
customer together at their respective common due date (𝑑 ). We assume that the company can manage the arrival of 
materials at the time when the machine is ready to process a batch (𝐵 ). The objective is to minimize the sum of the total 
actual flow time of jobs (𝑇𝐹 ). The decision is to determine Jobs' sequence, the number of batches, batch sizes, and the 
sequence of the resulting batches.  

4. A Mathematical Model 
 

In this section, we describe a mathematical model of the problem. Firstly, let us understand the notation to be used in the 
model as follows.  [ℎ] : The index of the sequence of the job, (ℎ = 1, . . . ,𝐾) using a backward approach [𝑖] : The index of the batch sequence, (𝑖 = 1, . . . ,𝑁 ) using a backward approach 𝐽[ ] : The job to be processed in the [h]-th 𝑡[ ] : The processing time of 𝐽[ ] 𝑠[ ] : The setup time of 𝐽[ ] 𝑑[ ] : The due date of 𝐽[ ] 𝑑[ ] : The number of demand for 𝐽[ ] 𝑁  : The number of batches of 𝐽[ ] 𝑄[ ][ ] : The batch sizes of 𝐽[ ]  𝐵[ ][ ] : The starting time of the machine already to process a 𝑄[ ][ ] 
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233𝑇𝐹  : the total actual Flow time 
A mathematical model as shown as follows 

minimize 𝑇𝐹 = ∑ ∑ ∑ 𝑠[ ] + 𝑡[ ]𝑄[ ][ ] + 𝜑[ ] 𝑄[ ][ ]  (1) 
subject to  ∑ ∑ 𝑡[ ]𝑄[ ][ ] + 𝑠[ ]. ≤ 𝑑[ ],  (2) 𝑄[ ][ ] = 𝑛[ ]. ,     ℎ = 1, … ,𝐾, (3) 𝐵[ ][ ] 𝑡[ ]𝑄 [ ] + 𝜑[ ] = 𝑑[ ], ℎ = 1, … ,𝐾;  𝜑[ ] ≥ 0, (4) 𝑄[ ][ ] ≥ 1;  𝑁[ ] ≥ 1;   𝑖 = 1, … ,𝑁 ;    ℎ = 1, … ,𝐾.   (5)  

 

Eq. (1) describes the objective function of the total actual flow time. Constraint (2) shows the makespan of all jobs scheduled 
in the machine must be shorter than the schedule period (start from time zero to the longest due date). It shows that the 
batches are scheduled using a backward approach. The Constraint (3) means material balances of jobs: the total parts on 
batches of a job must be the same as their demand. Constraint (4) describes that the first batch in every job could complete 
at the due date or before it, which means that the first batch's scheduled ready time depends on the due date and the time 
the previous job is scheduled. The time lag between the scheduled ready time of a job and their due date notated by 𝜑[ ], 
where the value of 𝜑[ ] ≥ 0. Constraint (5) shows both the batch size minimum and the minimum number of bathes. 

5. The Solution Methods 
 

The problem of batch scheduling with multiple jobs and multiple due dates can be viewed as a single job batch scheduling 
problem with recurring common due dates. However, this problem's decision is not only in determining the number of 
batches, batch size, and batch scheduling but also in deciding on the sequence of jobs to be scheduled. The simple case is 
shown by determining the jobs' sequence where the distance between consecutive due dates is sufficient to schedule the 
jobs. However, in some cases, the distance between the two or more consecutive due dates is very narrow and close together, 
so it is necessary to determine which job priority should be scheduled first.  

5.1 The sequence of jobs 
 

In this section, we are determining the job sequence influenced by the characteristics of the job. There are two 
characteristics, namely independent and dependent jobs. Independent jobs could be scheduled without being influenced by 
another job. It is due to the job's completion time, including setup time (𝐶[ ] + 𝑠[ ]), is less than the available time or the 
length of schedule 𝐿[ ] . Meanwhile, dependent jobs always need to be scheduled simultaneously, and sharing capacity is 
required. The completion time of a job is the total time it takes for a machine to complete the demand. Completion time job 
can be calculated using the formula 𝐶[ ] = ∑ 𝑄[ ]𝑡[ ] ,          𝑖 = 1,2,3, … . ,𝑁; ℎ = 1,2,3, … . ,𝐾 (6) 

However, the Length of the schedule is the distance-time between two consecutive due dates. The length of the schedule 
period can be calculated as follows 

 𝐿[ ] = 𝑑[ ] − 𝑑[ ],        ℎ = 1,2,3, … . ,𝐾  (7) 

A job can be scheduled without being affected by other jobs if that completion time is shorter than its length. However, if 
the job completion time is longer than the length, the job scheduling decision needs to consider other jobs. In the backward 
scheduling approach, it is necessary to view jobs with the next index. 

Proposition 1. Suppose there are K jobs with their respective due date scheduled on a single machine using the backward 
scheduling approach. Assume that the completion time plus setup time of jobs scheduled is less than the length (𝐶[ ] +𝑠[ ] ≤ 𝐿[ ]). Minimizing the total actual flow time can be obtained by scheduling the jobs to non-increasing due dates in a 
backward scheduling approach. 
 𝑑[ ] ≥  𝑑[ ]  ≥ ⋯  ≥  𝑑[ ]  
Proof. Let be considered a schedule of K jobs (ℎ = 1,2,3, . .𝐾) with the assumption that 𝐶[ ] + 𝑠[ ] ≤ 𝐿[ ]. Since 𝐿[ ] =𝑑[ ] − 𝑑[ ], so 𝑑[ ] ≥ 𝑑[ ]. It keeps the positive value of length. Since we adopted a backward scheduling approach, 
where the first position job on a sequence is a job close to the due date, the job must be arranged by a non-increasing due 
date. 𝑑[ ] ≥  𝑑[ ]  ≥ ⋯  ≥  𝑑[ ]∎ (proven)  

Example 1. Suppose there are three jobs (J1, J2, and J3) to be scheduled on a single machine with the backward scheduling 
approach. Parameters for among that jobs and the values for 𝐶[ ] + 𝑠[ ] and 𝐿[ ] can be seen in Table 1. It can be observed 
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in Table 1 that 𝐶[ ] + 𝑠[ ] is shorter or equal to 𝐿[ ]. Base on Proposition 1, the job sequence must arrange according to the 
non-increasing due date (Longest due date, LDD). It shows that the arrangement is 1-2-3 ∎ 

Table 1  
Job’s parameter for Example 1 

Job (h=1,2,3) 𝒏[𝒉] 𝒕[𝒉] 𝒔[𝒉] 𝒅[𝒉] 𝑪[𝒉] 𝑪[𝒉] + 𝒔[𝒉] 𝑳[𝒉] 𝑱𝟏 3 1 1 13 3 4 5 𝑱𝟐 2 2 1 8 4 5 5 𝑱𝟑 1 1 1 3 1 2 3 

Proposition  2. Suppose there are K jobs with their respective due date scheduled on a single machine using the backward 
scheduling approach. Let be assume that there are one or more completion time plus setup time of jobs scheduled is longer 
than the length (𝐶[ ] + 𝑠[ ] ≤ 𝐿[ ]). It leads that some of the jobs must be grouped. The group's result shows that the sum of 
their length must lower than the sum of their completion time and setup time. The new length can be created from the sum 
of the job’s length in the group multiple by the proportion of the job’s completion time. The new length is formulated as 
follows. 𝐿[ ] = ∑ 𝐿[ ] 𝐶[ ] + 𝑠[ ]/∑ 𝐶[ ] + 𝑠[ ] , ℎ = 1,2,3, … ,𝐺;   
Proof. Let be considered a schedule of G jobs (ℎ = 1,2,3, . .𝐺) with the assumption that 𝐶[ ] + 𝑠[ ] > 𝐿[ ]. Since the job 
could be scheduled if 𝐶[ ] + 𝑠[ ] ≤ 𝐿[ ] so we should combine (grouped) some job by counting some of their completion 
time job and length to meet the condition, that is  ∑ 𝐶[ ] + 𝑠[ ] ≤ ∑ 𝐿[ ]. Since we get the sum of both completion 
time plus setup time and the sum of length job in the group, we can calculate the proportion of length job, the so-called new 
length, notated by 𝐿[ ]. The formula for calculating that as follows 𝐿[ ] = ∑ 𝐿[ ] 𝐶[ ] + 𝑠[ ]/∑ 𝐶[ ] + 𝑠[ ] , ℎ = 1,2,3, … ,𝐺;  ∎ 

Example 2. Suppose three jobs (J1, J2, and J3) are scheduled on a single machine with the backward scheduling approach. 
Parameters for among that jobs can be seen in Table 2 

Table 2 
Job’s parameter for Example 2 

Job (h=1,2,3) 𝒏[𝒉] 𝒕[𝒉] 𝒔[𝒉] 𝒅[𝒉] 𝑪[𝒉] + 𝒔[𝒉] 𝑳[𝒉] ∑ 𝑪[𝒉] + 𝒔[𝒉]𝑮𝒉 𝟏   ∑ 𝑳[𝒉]𝑮𝒉 𝟏   L’ 
Job 1 3 1 1 13 4 3 4 3 4.73 
Job 2 2 2 1 10 5 1 9 7 5.91 
Job 3 1 1 1 9 2 9 11 13 2.36 

Proposition 3. Suppose there are K jobs scheduled on a single machine using the backward scheduling approach, with their 
respective due date. Let be assume that the completion time of each job is less than the new length (𝐶[ ] + 𝑠[ ] > 𝐿[ ]), so 
minimizing the actual flow time can be obtained by arranging jobs using the adjacent pairwise interchange (API) method. 
The formula for evaluated the adjacent pairwise interchange method as follows { 𝑑 − 𝑑 + 𝑠 }/𝑛 + 𝑡  ≤ { 𝑑 − 𝑑 + 𝑠 }/𝑛 + 𝑡 , 

Proof. Let's define adjacent pair jobs, i and j from K-job. Let S and S’ be two feasible schedules for the two jobs using the 
backward scheduling approach. The first Schedule (S) places i following by j and the second schedule (S’) is vice versa. 
The actual flow time for S and S’ can be calculated as follows 

Under S:   𝑇𝐹 (𝑆) = {𝑑 − (𝑑 − 𝑡 𝑛 )}𝑛 + 𝑑 − 𝑑 − 𝑡 𝑛 − 𝑠 − 𝑡 𝑛 𝑛  

Under S’:  𝑇𝐹 (𝑆′) = 𝑑 − 𝑑 − 𝑡 𝑛 𝑛 + 𝑑 − 𝑑 − 𝑡 𝑛 − 𝑠 − 𝑡 𝑛 𝑛  

Solving the equation under S and S’ found a formula for evaluated pair adjacent job, that is scheduled i and following by j 
(it mean job i is dominant than j) if only if { 𝑑 − 𝑑 + 𝑠 }/𝑛 + 𝑡  ≤ { 𝑑 − 𝑑 + 𝑠 }/𝑛 + 𝑡 . Otherwise, it is vice versa. 
If there are K-job, there are {K(K-1)/2} number of pairwise jobs. The number of jobs was found by counting the number 
of dominant jobs and arranging that by a non-increasing number. ∎ (proven) 

Example 3. Consider the problem similar in Tabel 3.  Let be applied Proposition 3 to evaluate the pair of adjacent jobs. The 
application of the adjacent pairwise interchange method shows in Table as follows.  

Table 3 
The result of the adjacent pairwise interchange (API) method 

Job 1 2 3 The number of asterisks 
1 - 0.33* 0* 2 
2 4 - 2* 1 
3 6 3 - 0 
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There are three resulting pairs: 1-2, 1-3, and 2-3. Each pair of jobs has two possible sequences: 1-2 and 2-1, 1-3 and 3-1, 2-
3 and 3-2. For this case, we combine the value between each pair. For example, we compare 1-2 and 2-1, and we found the 
value of 1-2 less than 2-1, so we give asterisks to 1-2. The complete sequence is arranged by arranging the job by a non-
increasing number of asterisks, that is 1-2-3.  ∎ 

5.2 the number of the batches, the batch size, and the sequence of the resulting batches 
 

The next step is to calculate the number of the batches and also the batch sizes. We adopt the formula in Halim et al. (1994) 
and Yusriski et al. (2015a). Assume there are G jobs (h=1,2,3,…, G), the formulas for calculating both the number of batches 
and the batch sizes for every single job as shown in equation () and () respectively.  𝑁[ ] = −𝑍[ ]/𝑠[ ] + 𝑍[ ] + 2𝑛[ ]𝑠[ ]𝑡[ ] /𝑠[ ]   (8) 

where     
 𝑍[ ] = 𝑛[ ]𝑡[ ]/2 + 𝑛[ ]𝑠[ ]/ 𝐿[ ]/𝑡[ ] + 𝑠[ ]/𝑡[ ] − 𝑛[ ] − 𝐿[ ]/2 − 𝑠[ ]/2 
 𝑁 = 1/2 + 1/4 + 2𝑛[ ]𝑡[ ]𝑠[ ]      
 
where ⌊ ⌋ means the maximum integer less than or equal to the value 

(9) 

𝑄[ ][ ] =
⎩⎪⎪⎨
⎪⎪⎧𝑚𝑎𝑥 𝑛 [ ]𝑖 + (𝑖 + 1)𝑠2𝑡 − 𝑠 𝑖𝑡 , 1 ,                                      𝑖 = 1,2, . . ,𝑁 − 1                                                                                𝑛[ ] − 𝑄[ ][ ],                                                                   𝑖 = 𝑁                                                                         

 

 (10) 

𝐹 = 𝑑 − 𝐵[ ][ ] 𝑄[ ][ ],           
where 𝐵[ ][ ] = ∑ 𝑄[ ][ ]𝑡 [ ] − (𝑖 − 1) 𝑠 , 𝑗 ∈ 𝑖 (11) 

 

The multi-item problem could be seen as the repetition of a common due date single item problem. We can prove that non-
increasing batch sizes obtain the optimal sequence of the resulting batches on the backward scheduling approach. 

Proposition 4. Suppose N batches (i = 1, .., N) with a constant setup time between two consecutive batches to be scheduled 
on a single machine. Minimizing The total actual flow time found by arranging the N-batches to non-increase the batch 
size.  

Proof. Assuming that there are N batches (i = 1, .., N) to be scheduled on a single-machine with constant setup time. Let S 
and S’ be two feasible schedules for N batches arranged using a backward scheduling approach. The first Schedule (S) 
places the first batch at the first position and the second batch at the second position, and the second schedule (S’) is vice 
versa. The sequence is the same for the other bathes under either S or S’. That batch begins and completes at the exact 
moment. Hence, the total actual flow time is the same for both S and S’. Let F as a sum of the actual flow time of the last 
(N-2) batches (𝐹 = ∑ 𝐹 ), the relevance of the total actual flow time, both S and S’ are the following. 

Under S:  𝐹 (𝑆) = 𝑡𝑄[ ] 𝑄[ ] + 𝑡𝑄[ ] + 𝑠 + 𝑡𝑄[ ] 𝑄[ ] + 𝐹 

                    𝐹 (𝑆) = 𝑡𝑄[ ] + 𝑡𝑄[ ]𝑄[ ] + 𝑠𝑄[ ] + 𝑡𝑄[ ] + 𝐹 

Under S’:  𝐹 (𝑆′) = 𝑡𝑄[ ] 𝑄[ ] + 𝑡𝑄[ ] + 𝑠 + 𝑡𝑄[ ] 𝑄[ ] + 𝐹  

                     𝐹 (𝑆′) = 𝑡𝑄[ ] + 𝑡𝑄[ ]𝑄[ ] + 𝑠𝑄[ ] + 𝑡𝑄[ ] + 𝐹 
Under S and S’, we found that 𝐹 (𝑆) − 𝐹 (𝑆 ) = 𝑄[ ] − 𝑄[ ]  

The total actual flow time of 𝐹 (𝑆) is less than or equal to the schedule of 𝑇𝐹 (𝑆′) if only if  𝑇𝐹 (𝑆) − 𝑇𝐹 (𝑆 ) ≤ 0, or 𝑄[ ] − 𝑄[ ] ≤ 0. It is showed by 𝑄[ ] ≥ 𝑄[ ]. We must sequence the batches in a backward approach by non-increasing 
the batch sizes. 𝑄[ ] ≥ 𝑄[ ] ≥ … ≥ 𝑄[ ] ≥ 𝑄[ ]∎ (proven) 

Halim et al. (1994) has proposed the algorithm, the so-called common due date single machine (CSM) algorithm, to solve 
a common due date single machine batch scheduling problem to minimize total actual flow time. Yusriski et al. (2015a) 
have developed a similar on Halim et al. (1994) on integer batch case. We develop both of the two algorithms on Halim and 
Yusriski with an adjustment; the last batch setup could be scheduled on a length of schedule period. The adjustment CSM 
algorithm, namely ICSM-A-Algorithm, is shown as follows. 
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ICSM-A Algorithm 

Step 1: Compute  𝑁  using Eq (9). Continue to Step 2 
Step 2: Compute 𝑁  using Eq (8). 

If 𝑁  < 1, then set N = 1, continue to Step 3. 
If 𝑁  > 𝑁 , then N = 𝑁 , continue to Step 3. 
If 1 <𝑁 < 𝑁 , set 𝑁 = ⌈𝑁 ⌉, where ⌈𝑁 ⌉means the minimum integer greater than or 
equal to 𝑁 . If 𝑁 𝑠 + 𝑛𝑡 < 𝑑, then 𝑁 = 𝑁 , Otherwise 𝑁 = 𝑁 − 1. Continue to Step 3. 

Step 3: Use Eq (10) to calculate 𝑄[ ]. Continue to Step 4. 
Step 4: Base on Proposition 4, sequence the resulting batches in non-increasing 𝑄[ ]. 

Continue to Step 5. 
Step 5: Compute 𝐹 using expression (11).∎ 
 
5.3 The proposed algorithm 
 

This section discusses the proposed algorithm for solving problems. There are three algorithms. The First is the P1-LDD 
algorithm; It is developed based on the Latest Due Date (LDD) approach. The second is the so-called P2-API algorithm; It 
is built based on a combination of LDD with the adjacent pairwise interchange (API) approach. The latest algorithm is the 
P3-PM algorithm, which is developed using the permutation (PM) method. 

The P1-LDD Algorithm 

Step 0: input parameters 𝐾, ℎ,  𝑛 , 𝑡 , 𝑠 , 𝑑 . Continue to Step 1 
Step 1: Based on Proposition 1, sequence the jobs using the Latest Due Date (LDD) rules. Set that as the initial sequence. 

Continue to Step 2 
Step 2: Assume that each job is processed in one batch. For each job, calculate 𝐶[ ] + 𝑠[ ] dan 𝐿[ ] using Eq (6) and (7). 

Continue to Step 3 
Step 3: Compare the values of 𝐶[ ] + 𝑠[ ] and 𝐿[ ]. 

If 𝐶[ ] + 𝑠[ ] ≤ 𝐿[ ] for all jobs set Set 𝑑[ ] = 𝐿[ ], continue to Step 6,  
Otherwise, go to Step 4 

Step 4: Start from job position [1] to [K] on the initial sequence, Grouping jobs with the following conditions: 
a. Set the independent job group, if only if 𝐶[ ] + 𝑠[ ] ≤ 𝐿[ ].  

The number of the job of each independent group is just one job 
b. Set the dependent group, if only if 𝐶[ ] + 𝑠[ ] > 𝐿[ ].  

The number of job in a group determine by Proposition 2 
 Continue to Step 5 
Step 5: Apply Proposition 2 to calculate 𝐿[ ]. Set 𝑑[ ] = 𝐿[ ], continue to Step 6. 
Step 6: Start from job [1] to [K], calculate 𝑁[ ],𝑄[ ][ ] 𝑓𝑜𝑟 𝑖 = 1,2, . . ,𝑁 and 𝐹[ ] of each job using the ICSM-A Algorithm. 
Step 7. Calculate the sum of total actual flow time 𝑇𝐹 = ∑ 𝐹[ ]  ∎ 

Example 4. Suppose three jobs (J1, J2, J3, and J4) are scheduled on a single machine with the backward scheduling approach. 
Determine the sequence of jobs, the number of baches each job, and the batches' sequence with the objective is to minimize 
the total actual flow time. Parameters for among that jobs can be seen in Table 4 

Table 4  
Job’s parameters for Example 4 

Job (h=1,2,3) 𝒏[𝒉] 𝒕[𝒉] 𝒔[𝒉] 𝒅[𝒉] 
Job 1 5 2 1 58 
Job 2 6 1 1 39 
Job 3 5 2 1 30 
Job 4 5 1 1 25 

 

The problem was solved using The P1-LDD Algorithm. The result of that is shown as follows, 
 

Step 1: The sequence is J1-J2-J3-J4.  
Step 2 to Step 4: we found the jobs grouped into three groups.  

The first group consists of { J1},  
The second group consist of {J2},  
The third group consists of two jobs, that is (J3-J4).  

Step 5: The value of length J1, J2, J3, and J4 are 19, 9, 18.3, 11.7 consecutively. 
Step 6: The result of both 𝑁[ ] and  𝑄[ ][ ] 

Job 1: N=5, 𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1 
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Job 2: N=4, 𝑄[ ] = 2,𝑄[ ] = 2,𝑄[ ] = 1,𝑄[ ] = 1 
Job 3: N=5, 𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1 
Job 4: N=2, 𝑄[ ] = 3,𝑄[ ] = 2 
The actual flow time of J1, J2, J3, and J4  are 40, 30, 40, 73 consecutively. 

Step 7: The total actual flow time is 183  
 
The P2-API Algorithm 

Step 0: input parameters 𝐾, ℎ,  𝑛 , 𝑡 , 𝑠 , 𝑑 . Continue to Step 1 
Step 1: Based on Proposition 1, sequence the jobs using the Latest Due Date (LDD) rules. Set that as the initial sequence. 

Continue to Step 2 
Step 2: Assume that each job is processed in one batch. For each job, calculate 𝐶[ ] + 𝑠[ ] dan 𝐿[ ] using Eq (6) and (7). 

Continue to Step 3 
Step 3: Compare the values of 𝐶[ ] + 𝑠[ ] and 𝐿[ ]. 

If 𝐶[ ] + 𝑠[ ] ≤ 𝐿[ ] for all jobs set Set 𝑑[ ] = 𝐿[ ], continue to Step 6,  
Otherwise, go to Step 4 

Step 4: Start from job position [1] to [K] on the initial sequence, Grouping jobs with the following conditions: 
a. Set the independent job group, if only if 𝐶[ ] + 𝑠[ ] ≤ 𝐿[ ].  

The number of the job of each independent group is just one job 
b. Set the dependent group, if only if 𝐶[ ] + 𝑠[ ] > 𝐿[ ].  

The number of job in a group determine by Proposition 2 
 Continue to Step 5 
Step 5: Apply Proposition 2 to calculate 𝐿[ ]. Set 𝑑[ ] = 𝐿[ ], continue to Step 6. 
Step 6: Focus on all the dependent group's job. Base on Proposition 3, sequence the jobs on each group using the adjacent 

pairwise interchange (API) method. Use minimizing the total actual flow time as an objective to evaluate each 
pair. Continue to Step 7 

Step 7: Determine the final sequence by combining all sequences in each group. Continue to Step 8 
Step 8: Start from job [1] to [K], calculate 𝑁[ ],𝑄[ ][ ] 𝑓𝑜𝑟 𝑖 = 1,2, . . ,𝑁 and 𝐹[ ] of each job using the ICSM-A Algorithm. 

Continue to Step 9 
Step 9. Calculate the sum of total actual flow time 𝑇𝐹 = ∑ 𝐹[ ] ∎ 
 

Example 5. Suppose the problem similar to Example 4. 

The problem was solved using the P2-API Algorithm. The result of that is shown as follows. 
Step 1: The sequence is J1-J2-J3-J4.  
Step 2 to Step 4: we found the jobs grouped into three groups.  

The first group consists of { J1},  
The second group consist of {J2},  
The third group consists of two jobs, that is (J3-J4).  

Step 5: The value of length J1, J2, J3, and J4 are 19, 9, 18.3, 11.7 consecutively. 
Step 6: Focus on jobs in Group 3 (J3-J4). The number of asterisks by pairwise interchange method shows in Table 

5 as follows. 
 

Table 5  
The result of the adjacent pairwise interchange (API) method 

Job 3 4 The number of asterisks 
3 - 1.2* 1* 
4 2.2 - 0 

   
                     Since 1.2 less than 2.2 so the sequence is J3-J4 

Step 7: the final sequence is J1-J2-J3-J4. 
Step 8: The actual flow time of jobs are 40, 30, 40, 73. 
Step 9: The total actual flow time is 183  

 

The P3-PM Algorithm 

Step 0: input parameters 𝐾, ℎ,  𝑛 , 𝑡 , 𝑠 , 𝑑 . Continue to Step 1 
Step 1: Generate all alternative job sequences using the permutation method. Save all alternatives into List alternative 

sequence. It could be  K! alternate sequences. Continue to Step 2. 
Step 2: Start from sequence [1] to [K] on the alternative list, calculate 𝑁[ ],𝑄[ ][ ] 𝑓𝑜𝑟 𝑖 = 1,2, . . ,𝑁 and 𝐹[ ] of each job 

using the ICSM-A Algorithm. Continue to Step 3. 
Step 3: If there are negative positions of beginning time on the sequence, remove that sequence from the alternative list. 

Continue to Step 4. 
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Step 4: Calculate the sum of 𝑇𝐹[ ] for each alternative jobs on the list.  
Step 5: Set the alternative sequence with the smallest value of the sum of 𝑇𝐹[ ] as a solution ∎ 

Example 6. Suppose the problem similar to Example 4. 

The problem was solved using the P3-PM Algorithm. The result of that is shown as follows. 
Step 1: There are 24 sequence alternatives: The alternative of the sequence as follows. 

 J1-J2-J3-J4,  J1-J2-J4-J3,  J1-J3-J2-J4,  J1-J3-J4-J2,  J1-J4-J2-J3,  J1-J4-J3-J2,  
J2-J1-J3-J4,  J2-J1-J4-J3,  J2-J3-J1-J4,  J2-J3-J4-J1,  J2-J4-J1-J3,  J2-J4-J3-J1,  
J3-J1-J2-J4,  J3-J1-J4-J2,  J3-J2-J1-J4,  J3-J2-J4-J1,  J3-J4-J1-J2,  J3-J4-J2-J1,  
J4-J1-J2-J3,  J4-J1-J3-J2,  J4-J2-J1-J3,  J4-J2-J3-J1,  J4-J3-J1-J2,  J4-J3-J2-J1,  
 

Step 2 until Step 5: The total actual flow time minimum is 183 founded by sequence J1-J2-J3-J4 with the decision 
of 𝑁[ ],𝑄[ ]  as follows 

Job 1: N=5, 𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1 
Job 2: N=4, 𝑄[ ] = 2,𝑄[ ] = 2,𝑄[ ] = 1,𝑄[ ] = 1 
Job 3: N=5, 𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1,𝑄[ ] = 1 
Job 4: N=2, 𝑄[ ] = 3,𝑄[ ] = 2 

Solving a similar case (Example 4) using the thee algorithm (the P1-LDD algorithm, the P2-API algorithm, and the P3-PM 
algorithm) has the same result. We can conclude that the thee proposed algorithm fit to solve the problem. 

6. Numerical Experience  
 

This section has been done to check the proposed algorithm's performance by numerical experience test. We coded among 
the proposed algorithm by Microsoft Visual C# 8 with .NET Framework 4.8 and reported the numerical experience test 
using the computer processor Intel ® i7 ® 860 @ 2,80 GHz (4 Cores - 8 Threads) @ 8 GB RAM. We show 25 problems as 
a sample and analysis that by the total actual flow time and the time unit computation. The parameter is generated by 
randomly using the Mersenne Twister algorithm. We set a random generator for the parameter as follows: the number of 
jobs between 8 to 10, the demand between 10 to 35, the processing time between 2 to 5, the set up time between 2 to 5, and 
the due dates between 700 to 1500. The result of the test is shown in Table 6. 
  
Table 6  
The result of the numerical experience test 

Total Actual Flowtime (TFa) Histories Time to compute Histories 

Case-j 
The P1-LDD 

Algorithm 
(A) 

The P2-API 
Algorithm 

(B) 

The P3-PM 
Algorithm 

(C) 

The P1-LDD The P2-API The P3-PM 

* Computing time is measured in milliseconds 

1 27062.11 27062.11 25356.56 27062.11 27062.11 25356.56 
2 54225.82 53044.87 51922.12 54225.82 53044.87 51922.12 
3 35407.34 33954.88 32809.82 35407.34 33954.88 32809.82 
4 38894.89 38894.89 38054.63 38894.89 38894.89 38054.63 
5 14892.27 14892.27 14573.52 14892.27 14892.27 14573.52 
6 17239.42 17239.42 16558.00 17239.42 17239.42 16558.00 
7 27496.75 27496.75 26401.26 27496.75 27496.75 26401.26 
8 26888.93 26344.51 26344.51 26888.93 26344.51 26344.51 
9 16406.06 16406.06 15509.89 16406.06 16406.06 15509.89 
10 14944.64 14944.64 14646.17 14944.64 14944.64 14646.17 
11 14755.23 14755.23 14755.23 14755.23 14755.23 14755.23 
12 49272.79 47403.10 42774.13 49272.79 47403.10 42774.13 
13 13289.65 13289.65 13235.28 13289.65 13289.65 13235.28 
14 15763.35 15763.35 14145.13 15763.35 15763.35 14145.13 
15 36427.00 36427.00 34511.35 36427.00 36427.00 34511.35 
16 19316.84 19316.84 18415.24 19316.84 19316.84 18415.24 
17 42897.54 41675.21 35176.22 42897.54 41675.21 35176.22 
18 34053.79 34053.79 29576.70 34053.79 34053.79 29576.70 
19 19276.70 19276.70 18874.10 19276.70 19276.70 18874.10 
20 37547.67 37547.67 33441.23 37547.67 37547.67 33441.23 
21 47027.56 47027.56 46232.64 47027.56 47027.56 46232.64 
22 26809.36 26212.82 26212.82 26809.36 26212.82 26212.82 
23 48814.77 47391.13 41975.68 48814.77 47391.13 41975.68 
24 24367.18 23788.48 23529.47 24367.18 23788.48 23529.47 
25 35784.86 35784.86 35272.93 35784.86 35784.86 35272.93 
Σ 738862.51 729993.78 690304.63 738862.51 729993.78 690304.63 
 29554.50 29199.75 27612.19 199158.68 199680.88 337587.10 
s 12636.98 12275.85 11290.03 564332.64 564262.13 1062738.29 
�̅�  
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For analyzing the data in Table 6, we are using the Bonferroni approach to compare the three algorithms' performance: the 
total actual flow time. It could be three pairwise comparisons for three methods: The P1-LDD Algorithm versus The P2-
API Algorithm (A VS B), The P1-LDD Algorithm versus The P3-PM Algorithm (A VS C), and The P2-API Algorithm 
versus The P3-PM Algorithm (B VS C). We use α=6%, so 𝛼 = 2% (i=1,2,3). The hypothesis is shown as follows. 
 H0 : μ1 = μ2 = μ3 = μ    
 H1 : μ1 ≠ μ2 ≠ μ3    (minimum there is one deferent pair of the algorithm) 
 
The P1-LDD Algorithm VS The P2-API Algorithm 
 (𝛼 = 2%, ,𝑛 = 25, 𝑠 = 590.26, �̅� = 354.75 ) 

Calculate 𝑡 , /  = 𝑡 , = 1.316 (From T-student) 
Calculate ℎ𝑤 =  𝑡 , 𝑠( ) /√25 = 155.35 

 Calculare �̅� (A-B) - ℎ𝑤 ≤ 𝜇( ) ≤ �̅� (A-B) + ℎ𝑤, it found 199.39 ≤ 𝜇( ) ≤ 510.11 
Since minimizing case, if The P1-LDD Algorithm VS The P2-API Algorithm, chose The P2-API Algorithm 

 
The P1-LDD Algorithm VS The P3-PM Algorithm 
(𝛼 = 2%, ,𝑛 = 25, 𝑠 =2227.28, �̅� =1942.32) 

Calculate 𝑡 , /  = 𝑡 , = 1.316 (From T-student) 
Calculate ℎ𝑤 =  𝑡 , 𝑠( ) /√25 = 586.22 

 Calculare �̅� (A-C) - ℎ𝑤 ≤ 𝜇( ) ≤ �̅� (A-C) + ℎ𝑤, it found 1356.10 ≤ 𝜇( ) ≤ 2528.53 
Since minimizing case, if The P1-LDD Algorithm VS The P3-PM Algorithm, chose The P3-PM Algorithm 
 
The P2-API Algorithm VS The P3-PM Algorithm 
(𝛼 = 2%, ,𝑛 = 25, 𝑠 =1870.40, �̅� = 1587.57) 

Calculate 𝑡 , /  = 𝑡 , = 1.316 (From T-student) 
Calculate ℎ𝑤 =  𝑡 , 𝑠( ) /√25 = 492.29 
 Calculare �̅� (B-C) - ℎ𝑤 ≤ 𝜇( ) ≤ �̅� (B-C) + ℎ𝑤, it found 1095.28 ≤ 𝜇( ) ≤ 2079.86 
Since minimizing case, if The P2-API Algorithm VS The P3-PM Algorithm, chose The P3-PM Algorithm 
 
Based on the Bonferroni comparison method, we can observe that The P3-PM Algorithm is better than another, followed 
by The P2-API Algorithm and The P1-LDD Algorithm consecutively. However, the comparison of time to compute shows 
vise versa. The P1-LDD Algorithm is shortest than another, followed by The P2-API Algorithm and The P3-PM Algorithm.  
  
We have been done to check more than 1000 cases. We found that the P1-LDD Algorithm has the best performance when 
solving a simple problem, including more groups with one job in every group. The P3-PM Algorithm has the best 
performance when solving small complicated problems (the problem has more groups with fewer jobs in a group with fewer 
than ten jobs). However, The P2-API Algorithm has the best performance when solving a complicated problem, including 
more groups and more jobs in every group. 
 
7. Concluding Remarks 
 
This research deals with a batch scheduling of multi-job with multiple delivery dates on a single machine where every job 
consists of a number of parts. The objective is to minimize the total actual flow time. A problem addressing the combination 
of multi-job and multi-due dates is rather complicated and known as NP-Hard. We proposed three algorithms to solve the 
problem based on the longest due date rule (The P1-LDD Algorithm), the adjacent pairwise interchange method (The P2-
API Algorithm), and the permutation method (The P3-PM Algorithm). The numerical experience test found insight: The 
P1-LDD Algorithm fit to solve a simple problem, including more groups with one job in every group; The P3-PM Algorithm 
has the best performance when solving small complicated problems (the problem has more groups with fewer jobs in a 
group less than ten jobs); The P2-API Algorithm has outstanding performance when solving a complicated problem, 
including more groups and more jobs in every group. 
 
The problem in this research assumes that jobs are scheduled on a single machine. There are cases in a real system that the 
jobs should be scheduled on a serial or parallel machine. The model can be extended to discuss scheduling jobs on flow 
shop, job shop, or parallel machine.  
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