An MEDT study of Diels-Alder reactions of a tetrahydroazulenone with maleimides: Mechanism, selectivity, and antimicrobial insights

Abdeljabbar Jaddi^{a,b}, Amine Rafik^{a,c}, Ouadia Hamlaoui^d, Mohammed Salah^d, Alberto García-Vela^b and

Khadija Marakchi^a*

 ^a Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, LS3MN2E/CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
 ^b Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain.

^c Departamento de Ciencias Integradas, Centro de Estudios Avanzados en Física, Matemática y Computación; Unidad Asociada GIFMAN, CSIC-UHU, Universidad de Huelva, Huelva, 21071, Spain.

^d Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco.

*Corresponding author: k.marakchi@um5r.ac.ma

	Atomic Site	P_k^+	P_k^-	ω _k	$\mathbf{N}_{\mathbf{k}}$
1a	C1	0.18	0.38	0.47	1.27
	C4	0.13	0.40	0.34	1.33
2a	C1	0.13	0.42	0.38	1.40
	C4	0.16	0.34	0.47	1.13
3 a	C1	0.09	0.29	0.26	0.97
	C4	0.22	0.48	0.64	1.60
4 a	C1	0.12	0.40	0.31	1.33
	C4	0.14	0.41	0.37	1.36
5a	C1	0.21	0.28	0.49	0.93
	C4	0.01	0.54	0.02	1.80
6a	C1	0.08	0.26	0.25	0.87
	C4	0.23	0.47	0.72	1.56
1b	C5	0.25	0.04	0.81	0.06
	C6	0.25	0.04	0.81	0.06
2 b	C5	0.25	0.10	0.77	0.17
	C6	0.25	0.10	0.77	0.17
3 b	C5	0.25	0.03	0.81	0.08
	C6	0.25	0.03	0.81	0.08
4b	C5	0.24	0.07	0.70	0.13
	C6	0.28	0.08	0.81	0.15
5b	C5	0.25	0.09	0.82	0.15
	C6	0.25	0.09	0.82	0.15
6b	C5	0.25	0.02	0.88	0.05
	C6	0.25	0.02	0.88	0.05

Table 1S. Local reactivity indices for the reaction of the dienes and the different dienophiles calculated atB3LYP/6-311++G(d,p) level of theory

Table 2S. Relative energies ΔE (kcal.mol⁻¹), Gibbs free energies ΔG (kcal.mol⁻¹), relative enthalpies ΔH (kcal.mol⁻¹), and entropies ΔS (cal.mol⁻¹.K⁻¹) of the TSs and products involved in the DA reactions of diene 1a with different dienophiles at the B3LYP/6-311++g(d,p) in gas phase and in toluene solvent at a temperature of 383.15 K

		ΔΕ	ΔG	ΔΗ	ΔS
	TS1-endo	12.56	30.62	13.32	-45.15
	TS1-exo	15.14	32.96	15.75	-44.93
	TS2-endo	11.68	30.51	12.34	-47.40
	TS2-exo	16.32	34.63	16.91	-46.27
	TS3-endo	12.01	30.73	12.79	-46.84
	TS3-exo	15.09	32.60	15.66	-44.23
	TS4-endo	14.14	33.05	14.85	-47.51
	TS4-exo	16.96	35.54	17.60	-46.83
	TS5-endo	9.44	28.20	10.16	-47.09
	TS5-exo	16.28	34.49	16.85	-46.05
	TS6-endo	11.77	30.50	12.54	-46.86
Gas	TS6-exo	14.60	32.02	15.16	-44.01
	P1-endo	-13.82	8.64	-10.65	-50.35

	P1-exo	-17.10	5.51	-13.92	-39.40
	P2-endo	-14.44	8.74	-11.32	-52.35
	P2-exo	-17.88	5.41	-14.73	-52.56
	P3-endo	-13.38	9.10	-10.27	-50.57
	P3-exo	-16.83	5.65	-13.70	-50.50
	P4- <i>end</i> o	-12.57	10.39	-9.44	-51.75
	P4-exo	-16.36	6.55	-13.18	-51.50
	P5-endo	-15.78	7.24	-12.63	-51.84
	P5-exo	-18.65	4.48	-15.49	-52.11
	P6-endo	-13.36	9.02	-10.28	-50.38
	P6- <i>exo</i>	-16.88	5.54	-13.77	-50.39
	TS1-endo	13.28	31.25	14.03	-44.95
	TS1-exo	15.37	32.81	15.96	-43.98
	TS2-endo	12.40	31.60	13.07	-48.35
	TS2-exo	16.80	35.25	17.40	-46.59
	TS3-endo	13.11	31.90	13.83	-47.16
	TS3-exo	15.31	33.26	15.89	-45.35
	TS4-endo	14.78	34.45	15.56	-49.29
	TS4-exo	17.54	35.92	18.16	-46.35
	TS5-endo	10.66	29.29	11.32	-46.88
	TS5-exo	16.43	34.45	16.98	-45.59
	TS6-endo	12.81	31.54	13.60	-46.82
Toluene	TS6-exo	14.87	32.23	15.46	-43.76
	P1-endo	-12.74	9.65	-9.55	-50.11
	P1-exo	-16.26	6.21	-13.07	-50.30
	P2-endo	-13.38	10.08	-10.24	-53.02
	P2-exo	-17.03	6.55	-13.86	-53.26
	P3-endo	-12.32	10.28	-9.23	-50.91
	P3-exo	-16.05	6.57	-12.90	-50.81
	P4-endo	-11.55	11.56	-8.39	-52.06
	P4-exo	-15.43	7.82	-12.22	-52.30
	P5-endo	-14.62	8.48	-11.46	-52.04
	P5-exo	-17.87	5.23	-14.70	-52.03
	P6-endo	-12.32	9.84	-9.21	-49.70
	P6-exo	-16.09	6.40	-12.94	-50.48

Table 3S. Relative energies ΔE (kcal.mol⁻¹), Gibbs free energies ΔG (kcal.mol⁻¹), relative enthalpies ΔH (kcal.mol⁻¹), and entropies ΔS (cal.mol⁻¹.K⁻¹) of the TSs and products involved in the DA reactions of diene 1a with different dienophiles at the B3LYP/6-311++g(d,p) in gas phase and in toluene solvent at a temperature of 298.15 K

	ΔΕ	ΔG	ΔΗ	ΔS
TS1-endo	11.69	26.37	12.39	-46.88
TS1-exo	16.53	31.01	17.08	-46.69
TS2-endo	14.12	28.41	14.71	-45.95
TS2-exo	14.90	29.29	15.40	-46.59
TS3-endo	11.75	26.95	12.45	-48.63

	TS3-exo	16.56	30.75	17.05	-45.93
	TS4-endo	14.14	29.01	14.77	-47.75
	TS4-exo	16.96	31.55	17.52	-47.07
	TS5-endo	11.80	26.32	12.44	-46.53
	TS5-exo	14.87	29.04	15.32	-46.02
	TS6-endo	11.77	26.51	12.48	-47.05
Gas	TS6-exo	14.60	28.27	15.07	-44.25
	P1-endo	-13.82	4.78	-10.59	-51.54
	P1-exo	-17.10	1.61	-13.85	-51.87
	P2-endo	-14.44	4.19	-11.27	-51.86
	P2-exo	-17.88	0.84	-14.68	-52.05
	P3-endo	-13.38	5.21	-10.23	-51.80
	P3-exo	-16.83	1.78	-13.65	-51.72
	P4-endo	-12.57	6.00	-9.39	-51.62
	P4-exo	-16.36	2.18	-13.13	-51.35
	P5-endo	-15.78	2.84	-12.58	-51.71
	P5-exo	-18.65	0.06	-15.44	-51.97
	P6-endo	-13.36	4.74	-10.24	-50.243
	P6-exo	-16.88	1.26	-13.72	-50.242
	TS1-endo	12.48	27.22	13.18	-47.11
	TS1-exo	16.82	31.10	17.38	-46.01
	TS2-endo	14.88	29.39	15.49	-46.62
	TS2-exo	15.22	29.74	15.72	-47.01
	TS3-endo	12.81	28.12	13.50	-49.04
	TS3-exo	16.79	30.83	17.31	-45.36
	TS4-endo	14.82	29.68	15.48	-47.63
	TS4-exo	17.52	31.91	18.08	-46.41
	TS5-endo	13.18	27.61	13.80	-46.32
	TS5-exo	14.64	28.77	15.12	-45.81
	TS6-endo	13.14	27.98	13.92	-47.17
Toluene	TS6-exo	15.20	28.92	15.76	-44.15
	P1-endo	-12.75	5.814	-9.50	-51.36
	P1-exo	-16.27	2.427	-13.00	-51.73
	P2-endo	-13.41	5.474	-10.20	-52.59
	P2-exo	-17.04	1.851	-13.81	-52.52
	P3-endo	-12.37	5.961	-9.22	-50.91
	P3-exo	-16.10	2.442	-12.87	-51.35
	P4-endo	-11.54	7.065	-8.33	-51.63
	P4-exo	-15.39	3.124	-12.13	-51.16
	P5-endo	-9.02	9.693	-5.67	-51.52
	P5-exo	-11.89	6.913	-8.53	-51.78
	P6-endo	-11.99	6.04	-8.78	-49.72
	P6-exo	-15.76	2.53	-12.52	-50.47

Structures	r (Å)	l	r (Å)	l
	C1-C5		C4-C6	
P1-endo	1.587	0.420	1.548	0.604
TS1-endo	2.491	0.430	2.022	0.094
P1-exo	1.580	0.400	1.556	0.686
TS1-exo	2.527	0.400	2.045	0.080
P2-endo	1.587	0.451	1.548	0.675
TS2-endo	2.458	0.431	2.051	0.075
P2-exo	1.580	0 2 8 2	1.556	0.682
TS2-exo	2.554	0.383	2.051	0.062
P3-endo	1.588	0.465	1.549	0.675
TS3-endo	2.437	0.405	2.052	0.075
P3-exo	1.581	0.400	1.556	0.688
TS3-exo	2.530	0.400	2.042	0.000
P4-endo	1.589	0.436	1.551	0.680
TS4-endo	2.484	0.430	2.032	0.069
P4-exo	1.583	0 380	1.557	0.684
TS4-exo	2.550	0.389	2.048	0.004
P5-endo	1.588	0.437	1.548	0.677
TS5-endo	2.482	0.437	2.047	0.077
P5-exo	1.580	0.386	1.555	0.672
TS5-exo	2.550	0.560	2.065	0.072
P6-endo	1.588		1.549	
		0.462		0.677
TS6-endo	2.443		2.049	
P6-exo	1.582		1.556	
		0.391		0.690
TS6-exo	2.544		2.038	

Table 4S. Calculated bond lengths (Å) and l index of bond formation for the reaction of the diene 1a with the various dienophiles

Pronerties	P1-	P2-	Р3-	P4-	P5-	P6-	∐nit
Toperties	endo/exo	endo/exo	endo/exo	endo/exo	endo/exo	endo/exo	Oint
			Abso	orption			<u>.</u>
water solubility	-3.01	-3.279	-4.481	-4.136	-3.275	-5.012	Numeric (log mol/L)
							Numeric
Caco2	0.643	1.235	1.353	1.381	0.101	1.324	(log Papp
permeability							cm/s
Intestinal							Numeric
absorption	96.769	96.559	98.449	96.326	99.944	96.899	(%
(human)							Absorbed)
Skin	-3 529	-3 451	-3 092	-3 265	-3 352	-3 181	Numeric
Permeability	5.52)	5.151	5.0)2	5.205	5.552	5.101	(log Kp)
P-	N	Na	N.	Ver	Na	N	Categorical
substrate	INO	INO	INO	res	INO	INO	(Yes/No)
P-							~
glycoprotein	No	No	Yes	Yes	No	Yes	Categorical
I inhibitor							(Yes/No)
Р-							Categorical
glycoprotein	No	No	No	No	No	No	(Yes/No)
II INNIDITOR							
VDss			DISU				Numeric (log
(human)	0.196	0.235	0.486	0.214	0.325	0.474	L/kg)
Fraction							6/
unbound	0.409	0.382	0.024	0.154	0.379	0.017	Numeric (Fu)
(human)							
BBB manual and ilitera	-0.122	0.245	0.178	0.167	0.294	0.14	Numeric (log
permeability							вв)
CNS	-2 953	-2 927	-1.88	-1 824	-2 84	-1.641	Numeric (log
permeability	2.955	2.921	1.00	1.021	2.01	110.11	PS)
			Meta	abolism			
CYP2D6	No	No	No	No	No	No	Categorical
substrate	INU	INU	NO	INU	NO	NO	(Yes/No)
CYP3A4	Yes	Yes	Yes	Yes	Yes	Yes	Categorical
CVP1A2							<u>(Yes/No)</u> Categorical
inhibitior	No	No	No	No	No	No	(Yes/No)
CYP2C19	NT.	N	17) I) I	17	Categorical
inhibitior	No	No	Yes	No	No	Yes	(Yes/No)
CYP2C9	No	No	No	No	No	No	Categorical
inhibitior	110	110	110	110	110	110	(Yes/No)
CYP2D6	No	No	No	No	No	No	Categorical
							<u>Categorical</u>
inhibitior	No	No	No	No	No	No	(Yes/No)
			Exc	retion			(100/110)
Total	0.212	0.115	0 000	0.011	0.242	0.022	Numeric (log
Clearance	-0.212	-0.113	0.008	0.911	-0.242	0.023	ml/min/kg)

 Table 5S. Predicted ADMET properties and rules of five of the compounds

Renal OCT2 substrate	No	No	No	Yes	No	No	Categorical (Yes/No)
			Lipinsk	i's rule of 5			
MW	259.3	273.33	335.4	315.41	289.33	369.84	Numeric (g/mol)
NRBs	0	0	1	1	1	1	-
NHBDs	1	0	0	0	0	0	-
NHBAs	4	4	4	4	5	4	-
TPSA (A°2)	63.24	54.45	54.45	54.45	63.68	54.45	-

Table 6S. The toxicity prediction of the compounds

	Predicted LD50	Predicted toxicity class	Average similarity	Prediction accuracy
P1-endo/exo	1000mg/kg	Class 4	88.79%	70.97%
P2-endo/exo	1000mg/kg	Class 4	88.79%	70.97%
P3-endo/exo	1000mg/kg	Class 4	70.6%	69.26%
P4-endo/exo	1000mg/kg	Class 4	88.79%	70.97%
P5-endo/exo	1000mg/kg	Class 4	71.32%	69.26%
P6-endo/exo	7000mg/kg	Class 6	66.83%	68.07%