Efficient synthesis and characterization of new ligand and their transition metal complexes derived from 4-methyl-1,2,3-thiadiazoles-5-carboxylic acid hydrazide

Amol D. Kale¹ Ram B. Kohire² Gautam P. Sadawarte³ Rajendra P. Phase¹ Vasant B. Jagrut²*

¹H NMR Spectra of ligand and their metal complexes

Fig.1. ¹H NMR spectra of the ligand HL (3)

¹H NMR (400 MHz, DMSO-*d*6) = δ 2.97 (3H^a, CH₃), δ 3.80 (3H^b, s, -OCH₃), δ 6.86-6.94 (2H, dd, Ar-H^c), δ 7.37 (1H, s, Ar-H^d), δ 8.51 (1H^e, s, -CH=N), δ 9.83 (1H^f, s, -CONH), δ 12.33 (1H^g, s, Phenolic -OH).

Fig.2. ¹³C NMR spectra of the ligand HL (3)

¹³C- NMR (400 MHz, DMSO, ppm) 163.52 (Phenolic carbon) ^f, 160.28 (amide carbon) ^e, 152.69 (azomethine carbon) ^d, 151.60, 142.69, 135.76, 120.39, 119.05, 117.69, 109.55, (aromatic carbon) ^c, 55.64 (methoxy carbon) ^b 15.41(methyl carbon) ^a.

Fig.3. ¹H NMR spectra of the Fe(II) (4a), M : L ratio (1 : 2)

¹H NMR (400 MHz, DMSO-*d*6) δ (ppm)2.97 this is due to the proton of methyl group, (6H^a, s, (CH₃)₂), 3.40 attributed to methoxy proton (6H^b, s, (OCH₃)₂), 6.90-7.92 revealed presence of aromatic proton (6H^{c, d}, m, Ar-H), 8.46 attributed to azomethine proton (CH =N)^e, 10.62 this chemical shift indicates presence of amide proton (CONH)^f.

Fig.4. ¹H NMR spectra of the Zn(II) (**4b**), M : L ratio (1 : 2)

¹H NMR (400 MHz, DMSO-*d*6) δ (ppm) = 2.97 this is due to the proton of methyl group, (6H^a, s, (CH₃)₂), 3.41 attributed to methoxy proton (6H^b, s, (OCH₃)₂), 6.53-7.90 revealed presence of aromatic proton (6H^{c, d}, m, Ar-H), 8.55 attributed to azomethine proton (CH=N)^e

Fig.5. ¹H NMR spectra of the Ni(II) (5b), (M:L ratio 1:1)

¹H NMR (400 MHz, DMSO-*d*6) δ (ppm) = 2.97 this is due to the proton of methyl group, (3H^a, s, CH₃), 3.41 attributed to methoxy proton (3H^b, s, OCH₃), 6.53-7.90 revealed presence of aromatic proton (3H^{c, d}, m, Ar-H), 8.55 attributed to azomethine proton (CH=N)^{e.}

Mass Spectra of ligand, HL (3)

Fig.6. Mass spectra of ligand HL (3) MS (m/z): 292 (M^+)

IR Spectra of ligand and their metal complexes

Fig.7. FT-IR spectra of the ligand, HL (3)

FT-IR (KBr, cm⁻¹): 3303 v (Ph-OH), 3160 v (N-H), 1656 v (C=O), 1602 v (C=N) 1285 v (C-O).

Fig.8. FT-IR spectra of the Zn(II),(4b)

FT-IR (KBr, cm⁻¹): 1562 attributed to v(C=N), 1276 arising new band from phenolic v(C-O), lower frequency new bands 520 and 474 attributed to v(M-O) and v(M-N).

Fig.9. FT-IR spectra of the Ni(II),(5a)

FT-IR (KBr, cm⁻¹): 3409 vibrational frequency due to the coordinated water, 1536 attributed to v(C=N), 1277 arising new band from phenolic v(C-O), lower frequency new bands 536 and 484 attributed to v(M-O) and v(M-N).