Current Chemistry Letters 13 (2024) ***_***

Contents lists available at GrowingScience

Current Chemistry Letters

homepage: www.GrowingScience.com

Synthesis, characterization, and *in vitro* anticancer evaluation of 2,4-disulfonylsubstituted 5aminothiazoles

Volodymyr Zyabrev^a, Bohdan Demydchuk^a, Stepan Pilyo^a, Victor Zhirnov^a, Olexandr Liavynets^b and Volodymyr Brovarets^{a*}

^aDepartment of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Akademika Kukharya Str., 1, Kyiv, 02094, Ukraine ^bDepartment of General Chemistry and Chemistry of Materials, Yuriy Fedkovych Chernivtsi National University, Kotsyubynsky Str., 2,

Chernivtsi, 58012, Ukraine	
CHRONICLE	A B S T R A C T
Article history: Received October 2, 2023 Received in revised form January 5, 2024 Accepted February 8, 2024 Available online February 8, 2024	Novel 2,4-disulfonylsubstituted 5-aminothiazoles were synthesized and their anticancer activity was assessed at a high dose (10 μ M) against NCI 60 cancer cell lines. Compounds 24 and 25 showed the antiproliferative activity with mean growth inhibition about 66.0%. Replacing 4-hydroxypiperidine 24 with the more hydrophilic N-methyl piperazine 25 increased the number of sensitive cell lines while replacing these hydrophilic groups with lipophilic ones abolished the anticancer activity. The COMPARE analysis showed that the tested compounds had a moderate
Keywords: 4-Arylsulfonyl-1,3-thiazoles Design Synthesis Anticancer activity COMPARE correlations	positive correlation with alkylating agents (CCNU and methyl CCNU) and with a purine nucleotide biosynthesis inhibitor analog (L-cysteine). The results indicate that the above mechanisms of antitumor action of standard compounds are not the main ones for the tested compounds due to the lack of a high correlation. The results of this study allow us to consider compounds 24 and 25 as a basis for their further functionalization to obtain more active compounds.
	© 2024 by the authors; licensee Growing Science, Canada.

1. Introduction

Cancer, resulting from the uncontrolled proliferation of undifferentiated cells, is a severe disease worldwide. Among cancer treatment methods, chemotherapy is the primary method in which cancer cells are destroyed using a variety of natural and synthetic compounds. Despite significant progress in the development of new chemotherapeutic agents, cancer treatment remains a complex problem due to the toxicity, resistance, and lack of selectivity of currently available anticancer drugs.

Thiazole is a 5-membered heterocycle containing sulfur and nitrogen atoms, which has multiple reaction sites and serves as a backbone in several compounds widely used in drug development. Its derivatives have a broad spectrum of biological activity interacting with various molecular targets, presented in more than 18 drugs approved by the FDA for clinical use.¹ Among them are compounds that control cell proliferation and apoptosis and have antitumor activity, such as alpelisib, dasatinib, dabrafenib, ixabepilone, patellamide A and epothilone.² The synthesis of thiazole derivatives interacting with various molecular targets and structure-function relationships to support rational design in the construction of thiazole-based anticancer agents is the focus of recent literature reviews on developing novel compounds with anticancer potential.³ It was previously shown that sulfonyl-containing derivatives of some azoles demonstrated high antiproliferative and cytotoxic activity against various cancer cell lines,⁶⁻⁹ which served as the basis for the design, synthesis, and evaluation of the anticancer activity of thiazole sulfonyl derivatives presented in this work.

^{*} Corresponding author. Tel: +91-9449140275 E-mail address <u>brovarets@bpci.kiev.ua</u> (V. Brovarets)

^{© 2024} by the authors; licensee Growing Science, Canada doi: 10.5267/j.ccl.2024.2.003

2. Results and Discussion

2.1 The one dose assay

Most of the synthesized compounds did not show anticancer activity against cell lines of the total panel. Compounds 1-23 inhibited the growth of most cell lines tested by less than 20%. However, compounds 24 and 25 demonstrated antiproliferative activity against some cell lines of most subpanels, except for the CNS and Prostate subpanels for both compounds and Ovarian for 24 (Table 1). These compounds showed cytotoxicity only against the Breast cancer MDA-MB-468 cell line.

Table 1. One dose anticancer screening data of the most active compounds against NCI-60 human tumor cell lines

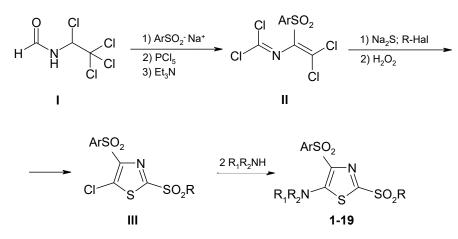
Compound ⁻	Cancer cell subpanel						
	Leukemia	Lung	Colon	Melanoma	Ovarian	Renal	Breast
24	CCRF-CEM (76) HL-60(TB) (65) K-562 (71) MOLT-4 (62) SR (84)	NCI-H460 (54) NCI-H522 (80)	HCT-15 (77) SW-620 (55)-	LOX IMVI (50) MDA-MB-435 (83) UACC-62 (58)		RXF 393 (66)	MCF7 (57) BT-549 (51) MDA-MB-468 (121)
25	CCRF-CEM (80) HL-60(TB) (82) K-562 (84) MOLT-4 (70) SR (84)	NCI-H460 (60) NCI-H522 (85)	HCT-116 (53) HCT-15 (75) SW-620 (64)-	LOX IMVI (70) MDA-MB-435 (92) SK-MEL-2 (51) UACC-62 (52)	OVCAR-3 (54) OVCAR-8 (52) NCI/ADR-RES (56)	786-0 (53) RXF 393 (70) SN12C (54)	MCF7 (57) BT-549 (57) T-47D (62) MDA-MB-468 (115)

The compounds were added at a concentration $(1\cdot10^{-5} \text{ M})$, and the culture was incubated for 48 h. The number reported for the one-dose assay is growth inhibition (%) relative to the no-drug control and relative to the time-zero number of cells. This allows the detection of growth inhibition (values between 0 and 100) and lethality (values more than 100). A value of 200 means all cells are dead. The percentage of growth inhibition of compounds is shown in parentheses.

Compounds 24 and 25 showed the same non-selective antiproliferative activity against cell lines of the NCI 60 total panel with mean growth inhibition values of 65.9 ± 3.1 and $66.0\pm2.8\%$, respectively. However, compound 25, unlike 24, inhibited the growth of 3 cell lines of Ovarian cancer and exceeded the latter in terms of the number of sensitive lines (24 and 16, respectively). The number of cell lines of each subpanel sensitive to compound 25, expressed as a percentage, is as follows: (the number of lines is given in brackets): Leukaemia - 83 (5), breast - 67 (4), Ovarian - 57 (4), Melanoma - 50 (4), Colon - 50 (3), Renal - 43 (3) and Lung - 29 (2) and to compound 24: Leukaemia - 83 (5), breast - 50 (3), Melanoma - 38 (3), Colon - 33 (2), Lung - 29 (2) and Renal - 14 (1).

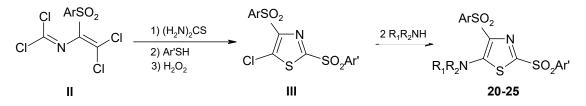
The structures of these compounds differed only in the substituents in the fifth position of the oxazole; that is, according to PubChem (https://pubchem.ncbi.nlm.nih.gov/), the replacement of 4-hydroxypiperidine (XLogP3-AA = -0.3) with the more hydrophilic N-methyl piperazine (XLogP3-AA = -0.4) led to an increase in the number of sensitive cell lines, whereas replacement of these hydrophilic groups with lipophilic isopropyl amine (XLogP3-AA = 0.1), furan-2-ylmethylamine, diethylamine (XLogP3 = 0.6), or pipepredine (XLogP3 = 0.8), giving compounds **20-23**, accordingly, eliminated anticancer activity. The activity of the derivatives also depended on the functionalization of the second position because even in the presence of hydrophilic substituents in the fifth position, the absence of the toluyl radical in the second position (compounds **17-19**) did not give active compounds. Both compounds showed cytotoxicity only against the Breast cancer MDA-MB-468 cell line. Thus, compound **25** showed more significant activity than **24** against the full NCS 60 cancer panel regarding the number of sensitive cell lines at the same activity. These compounds were analyzed by correlation analysis with standard drugs with established molecular mechanisms of action to suggest their possible targets.

2.2 COMPARE correlations


The results of a COMPARE analysis of the similarity of the GI_{50} and TGI vectors of compounds 24 and 25 approximated from their average graphs with those of known standard antitumor agents calculated from a five-dose analysis are presented in **Table 2**. The COMPARE analysis showed that the mean graphs of test compounds had a moderate positive correlation with compounds with alkylating agents at the GI_{50} vector (CCNU and methyl CCNU); the purine nucleotide biosynthesis inhibitor analog L-cysteine at the TGI vector, respectively, when compared to the corresponding vectors of the standard compounds that were calculated from the data of the five-dose analysis. However, when comparing average graphs obtained from the single dose assay alone, these compounds showed a moderate correlation (r: 0.51-0.57) with the anthracycline antibiotic N, N-dibenzyl daunomycin for both vectors. The mechanism of action of N, N-dibenzyl daunomycin includes intercalation of the drug molecule into nucleic acid and inhibition of topoisomerase II activity, which leads to the arrest of DNA replication and transcription.¹³ The results indicate that the above mechanisms of antitumor activity of standard compounds are unlikely for the tested compounds due to the lack of high correlation. In addition, the lack of selectivity of both compounds concerning sensitive cell lines indicates their influence on the general molecular mechanisms that ensure the life cycle of these lines.

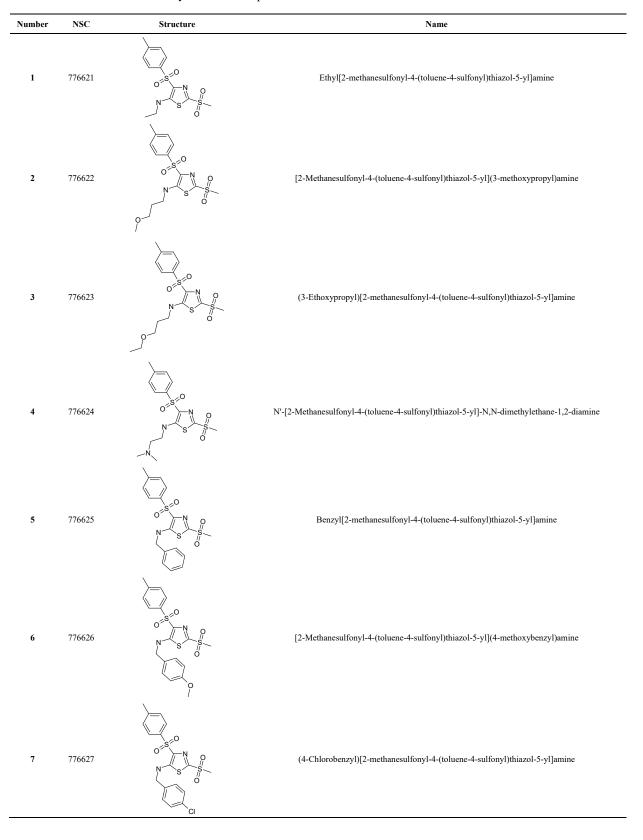
Compound	Correlating drug	Correlation coefficient	Reported Mechanism(s)	
			GI50	
24	CCNU	0.68	CCNU and methyl-CCNU alkylate and crosslink DNA, as well as carbamoylate DNA and	
25	methyl-CCNU	0.63	proteins, resulting in the inhibition of DNA and RNA synthesis and disruption of RNA processing ^{10,11}	
			TGI	
24 25	L-cysteine analogue	0.71 0.65	L-glutamine antagonist, selectively acting on the enzymes of purine nucleotide biosynthesis ¹²	

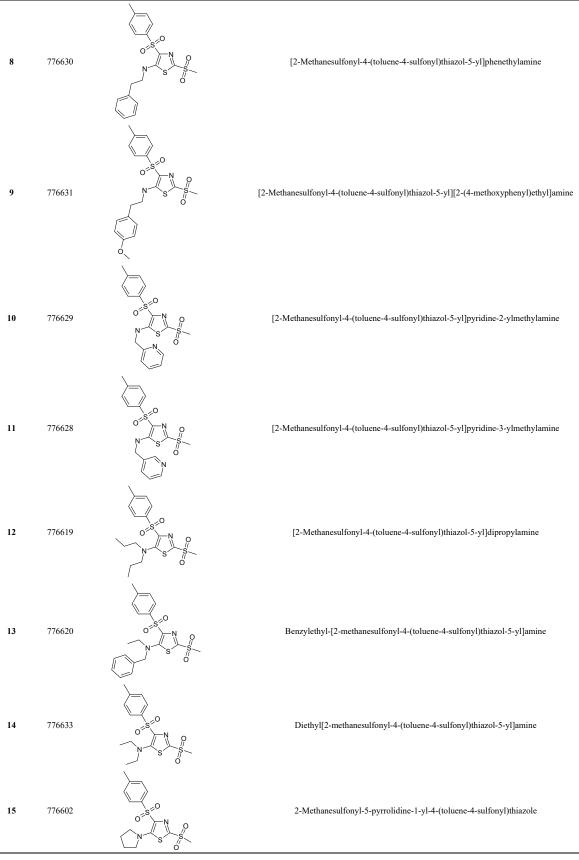
Table 2. Standard agent COMPARE correlations for compounds 24 and 25.


2.3 Chemistry

The synthesis of 5-amino-2,4-sulfonylsubstituted 1,3-thiazoles 1-19 is described in Scheme 1. Chosen (1,2,2,2-tetrachloroethyl)formamide I^{14} as the starting substance. Compound I reacted with the appropriate sodium aryl sulfonate, and then compounds were processed by two equivalents of phosphorus pentachloride. Then, under the action of triethylamine, hydrogen chloride was released with the formation of [(2,2-dichloro-1-arylsulfonyl)vinyl]carbonimidic dichloride II. Compounds II were reacting with excess sodium sulfide followed by alkyl halide with the formation of 5-chloro-2-(alkylthio)-4-(arylsulfonyl)-1,3-thiazoles, which were converted into the appropriate 5-chloro-2-(alkylsulfonyl)-4-(arylsulfonyl)-1,3-thiazoles III by oxidation with hydrogen peroxide in acetic acid. For the nucleophilic substitution of the chlorine atom, thiazoles III were processed by two equivalents of the appropriate amine with the formation of compounds 1-19.

Scheme 1. Synthesis of 2,4-disulfonylsubstituted 5-aminothiazoles 1-19


The synthesis of 5-amino-2,4-(arylsulfonyl)-1,3-thiazoles **20-25** is presented in **Scheme 2**. The three-stage reaction sequence includes accession of [(2,2-dichloro-1-arylsulfonyl)vinyl]carbonimidic dichloride **II** with thiourea, the addition of arylmercaptan, and oxidation with hydrogen peroxide in acetic acid. 5-Amino-2,4-(arylsulfonyl)-1,3-thiazoles **20-25** were received by heating 5-chloro-2,4-(arylsulfonyl)-1,3-thiazoles **III** with two equivalents of the appropriate amine in acetonitrile. Data of synthesized new derivatives 1,3-thiazole are reliably confirmed by NMR (¹H NMR and ¹³C NMR), chromato-mass, and elemental analyses.



Scheme 2. Synthesis of 2,4-disulfonylsubstituted 5-aminothiazoles 20-25

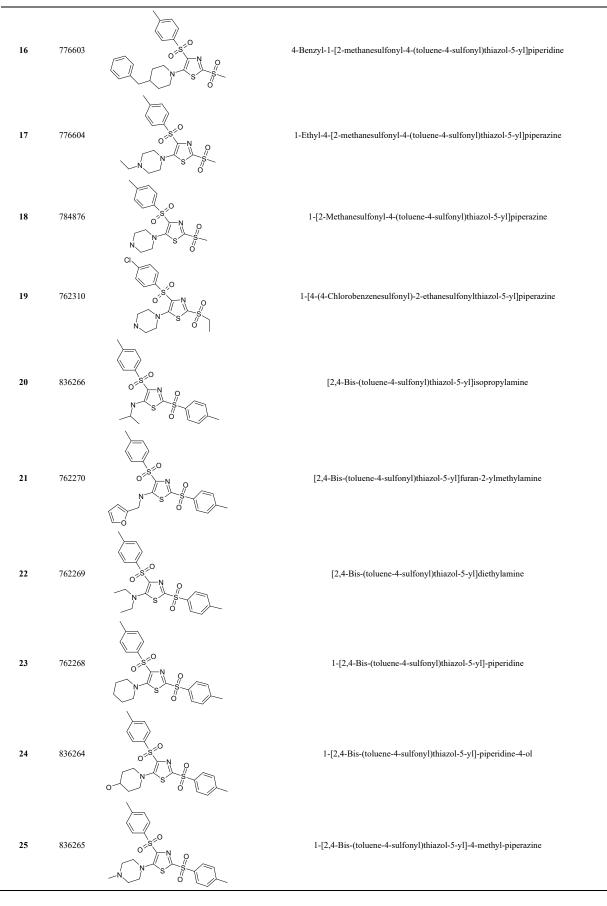

Synthesized compounds **1-25** were submitted for *in vitro* antitumor screening at the National Cancer Institute (NCI), USA, against a full panel of NCI 60 cell lines, and the NSC codes, shown in **Table 3**, were received.

Table 3. Chemical structures of synthesized compounds

5

3. Conclusions

Novel 2,4-disulfonylsubstituted 5-aminothiazoles have been synthesized in good yields and evaluated for their anticancer activity. Only compounds 24 and 25 showed activity against certain cancer cell lines of the NCI 60 panel in the one dose assay. These compounds had no cytostatic activity and inhibited cell growth non-selectively by an average of 66% in 16 and 24 cell lines, respectively. The COMPARE analysis showed that the mean graphs of test compounds had a moderate positive correlation with compounds with alkylating agents at the GI50 vector (CCNU and methyl CCNU) and the purine nucleotide biosynthesis inhibitor analog L-cysteine at the TGI vector, respectively, when compared to the corresponding vectors of standard compounds calculated from the five dose analysis. When comparing the results of the correlation analysis of the average graphs obtained in the one dose assay, both compounds showed a moderate correlation with the topoisomerase II inhibitor N, N-dibenzyl daunomycin. Due to the lack of high correlation, it is unlikely that the mechanisms of the standard compounds described above play a primary role in the antitumor activity of these compounds. The results of this study give grounds to consider compounds 24 and 25 as the basis for their further functionalization to obtain derivatives of 2,4-disulfonylsubstituted 5-aminothiazoles with more excellent antitumor activity.

Acknowledgements

We want to thank the National Cancer Institute, Bethesda, MD, USA, for the in vitro evaluation of anticancer activity within the Developmental Therapeutic Program and *Enamine* Ltd framework for the material and technical support.

Conflict of Interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

4. Experimental

4.1. Materials and Methods

All chemicals and solvents for the synthetic work were acquired from commercial sources and used without further purification. The reaction progress was monitored by the TLC method. Melting points were determined on a Fisher-Johns apparatus. IR spectra were recorded on a Vertex-70 spectrometer from KBr pellets. ¹H and ¹³C NMR spectra were recorded on Bruker Avance DRX 500 spectrometer (400 and 126 MHz, respectively) in DMSO-d₆, taking its residual protons signal as a standard. Chromato–mass spectra were recorded using an Agilent 1100 Series liquid chromatography–mass spectrometry system equipped with a diode array and an Agilent LC\MSD SL mass-selective detector. Parameters of chromatography–mass spectral analysis: column Zorbax SB-C18, 1.8 μ m, 4.6×15 mm; solvents: DMSO. Combustion elemental analysis was performed by hand in the V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry analytical laboratory. The carbon and hydrogen contents were determined using the Pregl gravimetric method, nitrogen – using Duma's gasometrical micromethod, sulfur – by the Scheininger titrimetric method, and chlorine – by the mercurometric method.

4.2. General procedure

The general method of synthesis of 5-amino-2,4-sulfonyl-1,3-thiazoles 1-25.

A mixture of 0.01 mol of one of the 5-chloro-2,4-sulfonyl-1,3-thiazole III and 0.02 mol of corresponding amine in 30 ml of acetonitrile boiling for 2 h. The solution was cooled to room temperature; the precipitate was filtered and washed with water. Alternatively, the solvent was removed *in vacuo*, and the residue was washed with 2-propanol. The precipitate was filtered and washed with water.

4.3 Physical and Spectral Data

Ethyl-[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]amine 1

Yield 48%. White crystal, mp 156°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ: 1.21 (3H, t, *J*=6.9 Hz), 2.38 (3H, s), 3.26-3.33 (5H, m), 7.44 (2H, d, *J*=7.8 Hz), 7.85 (2H, d, *J*=7.8 Hz), 7.93 (1H, s). ¹³C NMR (126 MHz, DMSO-*d*₆), δ: 13.5, 21.5, 43.2, 45.5, 125.8, 127.1, 130.6, 138.9, 144.5, 144.9, 162.2. MS (ES), *m/z* (*I*_{rel}, %): 361.0 [M+H]⁺, 359.0 [M–H]⁻. Anal. calcd for C₁₃H₁₆N₂O₄S₃, %: C, 43.32; H, 4.47; N, 7.77; S, 26.68. Found, %: C, 43.12; H, 4.49; N, 7.68; S, 26.70.

[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl](3-methoxypropyl)amine 2

Yield 63%. Yellow crystal, mp 143-144°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ: 1.88 (2H, p, *J*=5.9 Hz), 2.38 (3H, s), 3.26 (3H, s), 3.34 (3H, s), 3.42 (2H, t, *J*=5.6 Hz), 7.44 (2H, d, *J*=8.0 Hz), 7.84 (2H, d, *J*=8.0 Hz), 8.01 (1H, t, *J*=5.0 Hz). ¹³C NMR (126 MHz, DMSO-*d*₆) δ: 21.0, 27.5, 42.7, 48.3, 58.0, 69.7, 125.3, 126.5, 130.0, 138.3, 144.1, 144.4, 162.0. MS

(ES), m/z (I_{rel} , %): 405.0 [M+H]⁺. Anal. calcd for $C_{15}H_{20}N_2O_5S_3$, %: C, 44.54; H, 4.98; N, 6.92; S, 23.78. Found, %: C, 44.28; H, 4.99; N, 6.56; S, 23.69.

(3-Ethoxypropyl)[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]amine 3

Yield 68%. White crystal, mp 133-134°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 1.12 (3H, t, *J*=7.0 Hz), 1.78 – 1.95 (2H, m), 2.39 (3H, s), 3.23 – 3.37 (5H, m), 3.37 – 3.52 (4H, m), 7.45 (2H, d, *J*=8.0 Hz), 7.83 (2H, d, *J*=8.1 Hz), 7.96 (1H, t, *J*=5.4 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 15.4, 21.5, 28.3, 43.2, 49.0, 66.0, 68.1, 125.7, 127.0, 130.5, 138.8, 144.6, 144.9, 162.5. MS (ES), *m/z* (*I*_{rel}, %): 353.6 [M-SO₂]⁻. Anal. calcd for C₁₆H₂₂N₂O₅S₃, %: C, 45.91; H, 5.30; N, 6.69; S, 22.98. Found, %: C, 45.79; H, 5.42; N, 6.56; S, 22.90.

N'-[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]-N,N-dimethylethane-1,2-diamine 4

Yield 58%. White crystal, mp 147-148°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ : 2.22 (6H, s), 2.39 (3H, s), 2.53 (2H, d, *J*=4.3 Hz), 3.25 – 3.40 (5H, m), 7.45 (2H, d, *J*=8.0 Hz), 7.81 (3H, d, *J*=8.1 Hz). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 21.6, 43.2, 45.5, 47.9, 57.0, 127.1, 130.6, 138.8, 145.0, 145.3, 146.3, 157.5. MS (ES), *m/z* (*I*_{rel}, %): 311, 387.8. Anal. calcd for C₁₅H₂₁N₃O₄S₃, %: C, 44.65; H, 5.25; N, 10.41; S, 23.84. Found, %: C, 45.02; H, 5.30; N, 10.26; S, 23.79.

Benzyl[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]amine 5

Yield 88%. White crystal, mp 185°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ : 2.38 (3H, s), 3.31 (3H, s), 4.55 (2H, d, *J*=5.4 Hz), 7.27 – 7.41 (5H, m), 7.46 (2H, d, *J*=7.7 Hz), 7.91 (2H, d, *J*=7.5 Hz), 8.67 (1H, t). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 21.0, 42.5, 52.1, 126.1, 126.7, 127.5, 127.8, 128.7, 130.1, 135.7, 138.2, 144.6, 144.7, 161.4. MS (ES), *m/z* (*I*_{rel}, %): 423.0 [M+H]⁺, 421.0 [M-H]⁻. Anal. calcd for C₁₈H₁₈N₂O₄S₃, %: C, 51.17; H, 4.29; N, 6.63; S, 22.76. Found, %: C, 51.23; H, 4.32; N, 6.56; S, 22.80.

[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl](4-methoxybenzyl)amine 6.

Yield 92%. White crystal, mp 170°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 2.39 (3H, s), 3.30 (3H, s), 3.73 (3H, s), 4.45 (2H, s), 6.93 (2H, d, J=8.0 Hz), 7.32 (2H, d, J=8.0 Hz), 7.46 (2H, d, J=7.7 Hz), 7.88 (2H, d, J=7.7 Hz), 8.60 (1H, s). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.0, 42.5, 51.4, 55.0, 114.1, 126.0, 126.6, 127.2, 129.1, 130.1, 138.2, 144.5, 144.7, 158.9, 161.2. MS (ES), m/z (I_{rel} , %): 451.0 [M-H]⁻. Anal. calcd for C₁₉H₂₀N₂O₅S₃, %: C, 50.43; H, 4.45; N, 6.19; S, 21.25. Found, %: C, 50.29; H, 4.38; N, 6.03; S, 21.30.

(4-Chlorobenzyl)[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]amine 7

Yield 90%. Yellow crystal, mp 184°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 2.39 (3H, s), 3.31 (3H, s), 4.53 (2H, d, *J*=4.9 Hz), 7.33 – 7.56 (6H, m), 7.89 (2H, d, *J*=7.1 Hz), 8.68 (1H, s). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.0, 42.5, 51.4, 126.2, 126.6, 128.7, 129.4, 130.1, 132.4, 134.8, 138.2, 144.6, 144.8, 161.2. MS (ES), *m/z* (*I*_{rel}, %): 457.0 [M]⁺, 455.0 [M-2H]⁻. Anal. calcd for C₁₈H₁₇ClN₂O₄S₃, %: C, 47.31; H, 3.75; Cl, 7.76; N, 6.13; S, 21.05. Found, %: C, 47.25; H, 3.82; Cl, 7.80; N, 5.98; S, 21.10.

[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]phenethylamine 8

Yield 86%. White crystal, mp 185°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 2.39 (3H, s), 2.95 (2H, t, *J*=6.7 Hz), 3.30 (3H, s), 3.48 – 3.56 (2H, m), 7.17 – 7.36 (5H, m), 7.43 (2H, d, *J*=7.8 Hz), 7.76 (2H, d, *J*=8.1 Hz), 7.88 (1H, s). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.0, 40.0, 42.6, 53.6, 121.7, 123.0, 126.7, 130.1, 137.2, 138.2, 144.5, 144.8, 149.2, 155.0, 161.9. MS (ES), *m/z* (*I*_{rel}, %): 437.0 [M+H]⁺, 435.0 [M-2H]⁻. Anal. calcd for C₁₉H₂₀N₂O₄S₃, %: C, 52.27; H, 4.62; N, 6.42; S, 22.03. Found, %: C, 52.30; H, 4.73; N, 6.38; S, 22.08.

[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl][2-(4-methoxyphenyl)ethyl]amine 9

Yield 88%. White crystal, mp 176°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ : 2.39 (3H, s), 2.88 (2H, t, *J*=6.6 Hz), 3.30 (3H, s), 3.48 (2H, t, *J*=6.0 Hz), 3.71 (3H, s), 6.83 (2H, d, *J*=8.3 Hz), 7.15 (2H, d, *J*=8.3 Hz), 7.43 (2H, d, *J*=8.0 Hz), 7.77 (2H, d, *J*=8.1 Hz), 7.84 (1H, s). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 21.0, 32.8, 42.7, 51.8, 55.0, 113.8, 125.3, 126.5, 129.9, 130.0, 138.3, 144.0, 144.4, 157.9, 162.0. MS (ES), *m/z* (*I*_{rel}, %): 467.0 [M+H]⁺, 465.0 [M-2H]⁻. Anal. calcd for C₂₀H₂₂N₂O₅S₃, %: C, 51.48; H, 4.75; N, 6.00; S, 20.62. Found, %: C, 51.32; H, 4.78; N, 5.96; S, 20.58.

[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]pyridin-2-ylmethylamine 10

Yield 78%. Yellow crystal, mp 179-180°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ: 2.39 (3H, s), 3.33 (3H, s), 4.65 (2H, d, *J*=4.8 Hz), 7.30 – 7.38 (1H, m), 7.42 (1H, d, *J*=7.8 Hz), 7.46 (2H, d, *J*=8.0 Hz), 7.83 (1H, t, *J*=8.3 Hz), 7.89 (2H, d, *J*=8.1 Hz), 8.58 (1H, d, *J*=4.0 Hz), 8.61 – 8.68 (1H, m). ¹³C NMR (126 MHz, DMSO-*d*₆) δ: 21.0, 42.6, 53.6, 121.7, 123.0, 126.0,

V. Zyabrev et al. / Current Chemistry Letters 13 (2024)

126.7, 130.1, 137.2, 138.2, 144.5, 144.8, 149.2, 155.0, 161.9. MS (ES), *m/z* (*I*_{rel}, %): 250.6, 342.0 [M-Ms]⁻, 358.8 [M-SO₂]⁻. Anal. calcd for C₁₇H₁₇N₃O₄S₃, %: C, 48.21; H, 4.05; N, 9.92; S, 22.71. Found, %: C, 48.32; H, 4.11; N, 9.76; S, 22.69.

[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]pyridin-3-ylmethylamine 11

Yield 82%. White crystal, mp 193°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 2.38 (3H, s), 3.32 (3H, s), 4.58 (2H, d, J=5.8 Hz), 7.40 (1H, dd, J=7.5, 5.0 Hz), 7.46 (2H, d, J=8.0 Hz), 7.81 (1H, d, J=7.7 Hz), 7.89 (2H, d, J=7.9 Hz), 8.51 (1H, d, J=4.5 Hz), 8.62 (1H, s), 8.69 (1H, t, J=5.8 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.0, 42.5, 49.8, 123.8, 126.3, 126.6, 130.1, 131.6, 135.4, 138.1, 144.6, 144.9, 149.0, 161.2. MS (ES), m/z (I_{rel} , %): 424.0 [M+H]⁺, 422.0 [M-H]⁻. Anal. calcd for C₁₇H₁₇N₃O₄S₃, %: C, 48.21; H, 4.05; N, 9.92; S, 22.71. Found, %: C, 48.36; H, 4.09; N, 9.82; S, 22.74.

[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]dipropylamine 12

Yield 76%. White crystal, mp 96°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 0.79 (6H, t, *J*=7.3 Hz), 1.55 (4H, h, *J*=7.1 Hz), 2.40 (3H, s), 3.28 (3H, s), 3.41 (4H, t, *J*=7.3 Hz), 7.45 (2H, d, *J*=7.9 Hz), 7.77 (2H, d, *J*=8.0 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 10.8, 20.0, 21.0, 42.2, 58.6, 127.3, 129.7, 132.3, 138.2, 144.3, 147.7, 162.7. MS (ES), *m/z* (*I*_{rel}, %): 417.0 [M+H]⁺. Anal. calcd for C₁₇H₂₄N₂O₄S₃, %: C, 49.02; H, 5.81; N, 6.72; S, 23.09. Found, %: C, 48.96; H, 5.89; N, 6.54; S, 22.94.

Benzylethyl[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]amine 13

Yield 85%. Yellow crystal, mp 123°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ : 1.14 (3H, t, *J*=7.0 Hz), 2.40 (3H, s), 3.29 (3H, s), 3.53 (2H, q, *J*=6.9 Hz), 4.61 (2H, s), 7.22 – 7.38 (5H, m), 7.45 (2H, d, *J*=8.0 Hz), 7.80 (2H, d, *J*=8.1 Hz). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 11.8, 21.1, 42.0, 52.9, 59.2, 127.5, 127.73, 127.74, 128.6, 129.8, 134.5, 135.6, 137.7, 144.5, 150.0, 162.8. MS (ES), *m/z* (*I*_{rel}, %): 451.0 [M+H]⁺. Anal. calcd for C₂₀H₂₂N₂O₄S₃, %: C, 53.31; H, 4.92; N, 6.22; S, 21.35. Found, %: C, 53.25; H, 4.87; N, 6.05; S, 21.30.

Diethyl[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]amine 14

Yield 76%. White crystal, mp 125-126°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ : 1.10 (6H, t, *J*=6.9 Hz), 2.40 (3H, s), 3.28 (3H, s), 3.48 (4H, q, *J*=6.7 Hz), 7.44 (2H, d, *J*=7.8 Hz), 7.78 (2H, d, *J*=8.1 Hz). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 11.8, 21.1, 42.2, 51.2, 127.4, 129.7, 133.1, 138.1, 144.3, 147.9, 162.2. MS (ES), *m/z* (*I*_{rel}, %): 389.0 [M+H]⁺. Anal. calcd for C₁₅H₂₀N₂O₄S₃, %: C, 46.37; H, 5.19; N, 7.21; S, 24.76. Found, %: C, 46.41; H, 5.21; N, 7.18; S, 24.69.

2-Methanesulfonyl-5-pyrrolidin-1-yl-4-(toluene-4-sulfonyl)thiazole 15

Yield 85%. White crystal, mp 212°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 1.93 – 2.06 (4H, m), 2.40 (3H, s), 3.26 (3H, s), 3.46 – 3.58 (4H, m), 7.44 (2H, d, *J*=8.1 Hz), 7.78 (2H, d, *J*=8.1 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.0, 26.0, 42.5, 56.0, 127.2, 127.6, 129.8, 139.3, 143.2, 143.9, 159.5. MS (ES), *m/z* (I_{rel} , %): 387.0 [M+H]⁺. Anal. calcd for C₁₅H₁₈N₂O₄S₃, %: C, 46.61; H, 4.69; N, 7.25; S, 24.89. Found, %: C, 46.53; H, 4.75; N, 7.19; S, 24.83.

4-Benzyl-1-[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]piperidine 16

Yield 95%. White crystal, mp 142°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 1.29 – 1.48 (3H, m), 1.58 – 1.75 (2H, m), 2.40 (3H, s), 2.53 – 2.64 (2H, m), 2.98 (2H, t, *J*=11.7 Hz), 3.29 (3H, s), 3.64 (2H, d, *J*=11.2 Hz), 7.16 – 7.25 (3H, m), 7.26 – 7.34 (2H, m), 7.43 (2H, d, *J*=7.9 Hz), 7.80 (2H, d, *J*=8.2 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.1, 30.7, 35.9, 41.7, 42.2, 55.5, 125.9, 127.5, 128.2, 129.0, 129.8, 134.2, 137.7, 139.8, 144.5, 149.9, 163.8. MS (ES), *m/z* (*I*_{rel}, %): 490.0 [M]⁻. Anal. calcd for C₂₃H₂₆N₂O₄S₃, %: C, 56.30; H, 5.34; N, 5.71; S, 19.60. Found, %: C, 56.41; H, 5.32; N, 5.62; S, 19.76.

1-Ethyl-4-[2-methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]piperazine 17

Yield 73%. White crystal, mp 127°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ : 2.40 (3H, s), 2.44 – 2.53 (3H, m), 2.58 – 2.71 (4H, m), 3.32 (3H, s), 3.33 – 3.41 (4H, m), 3.54 (2H, t, *J*=5.7 Hz), 7.45 (2H, d, *J*=7.9 Hz), 7.82 (2H, d, *J*=8.0 Hz). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 21.1, 42.2, 52.0, 54.8, 58.4, 59.7, 127.6, 129.8, 135.0, 137.5, 144.6, 150.9, 163.6. MS (ES), *m/z* (*I*_{rel}, %): 157.0, 378.8. Anal. calcd for C₁₇H₂₃N₃O₄S₃, %: C, 47.53; H, 5.40; N, 9.78; S, 22.39. Found, %: C, 47.62; H, 5.38; N, 9.65; S, 22.40.

1-[2-Methanesulfonyl-4-(toluene-4-sulfonyl)thiazol-5-yl]piperazine 18

Yield 59%. White crystal, mp 229-230°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 2.41 (3H, s), 3.25 – 3.31 (4H, m), 3.34 (3H, s), 3.47 – 3.75 (4H, m), 7.46 (2H, d, *J*=8.3 Hz), 7.86 (2H, d, *J*=8.2 Hz), 9.50 (2H, s). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.1, 42.1, 42.2, 51.6, 118.9, 127.7, 129.9, 136.7, 137.2, 144.9, 162.5. MS (ES), *m/z* (*I*_{rel}, %): 285.2, 391.2. Anal. calcd for C₁₅H₁₉N₃O₄S₃, %: C, 44.87; H, 4.77; N, 10.47; S, 23.96. Found, %: C, 45.02; H, 4.79; N, 10.30; S, 24.00.

1-[4-(4-Chlorobenzenesulfonvl)-2-ethanesulfonvlthiazol-5-vl]piperazine 19

Yield 56%. White crystal, mp 136°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 0.99 (3H, t, *J*=7.3 Hz), 2.75 – 2.93 (4H, m), 3.18 – 3.43 (7H, m), 7.72 (2H, d, *J*=8.4 Hz), 7.92 (2H, d, *J*=8.5 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 7.4, 45.2, 49.3, 56.7, 130.0, 130.1, 133.6, 139.5, 139.8, 139.9, 165.0. MS (ES), *m/z* (I_{rel} , %): 206.4, 248.2, 293.0, 357.6. Anal. calcd for C₁₅H₁₈ClN₃O₄S₃, %: C, 41.33; H, 4.16; Cl, 8.13; N, 9.64; S, 22.06. Found, %: C, 41.35; H, 4.21; Cl, 8.16; N, 9.57; S, 22.09.

[2,4-Bis-(toluene-4-sulfonyl)thiazol-5-yl]isopropylamine 20

Yield 72%. White crystal, mp 186°C. $\delta_{H}(400 \text{ MHz}, \text{DMSO-}d_{6})$: 1.27 (6H, d, *J*=6.0 Hz), 2.34 (3H, s), 2.36 (3H, s), 3.38 – 3.45 (1H, m), 7.38 (2H, d, *J*=7.7 Hz), 7.40 – 7.52 (3H, m), 7.78 (4H, d, *J*=7.1 Hz). ¹³C NMR (101 MHz, DMSO) δ 21.5, 21.6, 21.6, 54.3, 126.4, 127.1, 128.1, 130.5, 130.9, 136.3, 138.6, 144.8, 144.9, 146.0, 161.4. MS (ES), *m/z* (*I*_{rel}, %): 465.0 [M+H]⁺. Anal. calcd for C₂₀H₂₂N₂O₄S₃, %: C, 53.31; H, 4.92; N, 6.22; S, 21.35. Found, %: C, 53.24; H, 4.85; N, 6.03; S, 21.29.

[2,4-Bis-(toluene-4-sulfonyl)thiazol-5-yl]furan-2-ylmethylamine 21

Yield 78%. White crystal, mp 169-170°C. $\delta_{H}(400 \text{ MHz}, \text{DMSO-}d_6)$: 2.37 (3H, s), 2.38 (3H, s), 4.53 (2H, s), 6.37 – 6.59 (2H, m), 7.40 (2H, d, *J*=8.0 Hz), 7.44 (2H, d, *J*=8.1 Hz), 7.66 (1H, s), 7.71 – 7.84 (4H, m), 8.42 (1H, s). ¹³C NMR (126 MHz, DMSO) δ : 21.0, 21.1, 45.2, 110.0, 110.6, 126.6, 127.0, 127.6, 130.0, 130.4, 135.6, 138.0, 143.5, 144.5, 144.9, 145.6, 148.3, 161.3. MS (ES), *m/z* (*I*_{rel}, %): 172.2, 248.6, 376.0. Anal. calcd for C₂₂H₂₀N₂O₅S₃, %: C, 54.08; H, 4.13; N, 5.73; S, 19.69. Found, %: C, 54.13; H, 4.18; N, 5.61; S, 19.57.

[2,4-Bis-(toluene-4-sulfonyl)thiazol-5-yl]diethylamine 22

Yield 82%. Yellow crystal, mp 94°C. $\delta_{H}(400 \text{ MHz}, \text{DMSO-}d_6)$: 1.12 (6H, t, *J*=7.0 Hz), 2.40 (3H, s), 2.43 (3H, s), 3.51 (4H, q, *J*=7.0 Hz), 7.37 (4H, d, *J*=8.0 Hz), 7.59 (2H, d, *J*=8.4 Hz), 7.63 (2H, d, *J*=8.3 Hz). ¹³C NMR (126 MHz, DMSO) δ : 11.7, 21.08, 21.12, 51.3, 127.53, 123.57, 129.5, 130.1, 132.7, 135.4, 138.0, 144.2, 145.3, 146.4, 161.9. MS (ES), *m/z* (*I*_{rel}, %): 465.0 [M+H]⁺. Anal. calcd for C₂₁H₂₄N₂O₄S₃, %: C, 54.29; H, 5.21; N, 6.03; S, 20.70. Found, %: C, 54.46; H, 5.18; N, 5.92; S, 20.61.

1-[2,4-Bis-(toluene-4-sulfonyl)thiazol-5-yl]piperidine 23

Yield 90%. White crystal, mp 151°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ : 1.51 – 1.59 (2H, m), 1.60 – 1.73 (4H, m), 2.40 (3H, s), 2.42 (3H, s), 3.34 – 3.39 (4H, m), 7.37 (4H, d, *J*=8.0 Hz), 7.60 (2H, d, *J*=8.1 Hz), 7.65 (2H, d, *J*=8.1 Hz). ¹³C NMR (126 MHz, DMSO-*d*₆) δ : 21.07, 21.11, 22.4, 24.6, 56.3, 127.5, 127.6, 129.6, 130.2, 133.8, 135.3, 137.7, 144.4, 145.4, 148.5, 163.8. MS (ES), *m/z* (*I*_{rel}, %): 328.2, 358.6, 370.8. Anal. calcd for C₂₂H₂₄N₂O₄S₃, %: C, 55.44; H, 5.08; N, 5.88; S, 20.18. Found, %: C, 55.36; H, 5.11; N, 5.63; S, 20.21.

1-[2,4-Bis-(toluene-4-sulfonyl)thiazol-5-yl]piperidin-4-ol 24

Yield 87%. White crystal, mp 155°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 1.52 – 1.65 (2H, m), 1.76 – 1.96 (2H, m), 2.39 (3H, s), 2.41 (3H, s), 3.18 – 3.29 (2H, m), 3.49 – 3.61 (2H, m), 3.65 – 3.82 (1H, m), 4.84 (1H, d), 7.33 – 7.42 (4H, m), 7.61 (2H, d, *J*=8.2 Hz), 7.65 (2H, d, *J*=8.1 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.1, 21.1, 33.1, 53.1, 63.7, 127.5, 127.6, 129.6, 130.2, 133.9, 135.2, 137.7, 144.4, 145.4, 148.6, 163.5. MS (ES), *m/z* (I_{rel} , %): 248.4, 293.0, 352.6. Anal. calcd for C₂₂H₂₄N₂O₅S₃, %: C, 53.64; H, 4.91; N, 5.69; S, 19.53. Found, %: C, 53.54; H, 4.86; N, 5.46; S, 19.58.

1-[2,4-Bis-(toluene-4-sulfonyl)thiazol-5-yl]-4-methylpiperazine 25

Yield 88%. White crystal, mp 157°C. ¹H NMR (400 MHz, DMSO- d_6), δ : 2.21 (3H, s), 2.40 (3H, s), 2.41 (3H, s), 2.43 – 2.49 (4H, m), 3.36 – 3.42 (4H, m), 7.38 (4H, m), 7.63 (2H, d, *J*=8.2 Hz), 7.67 (2H, d, *J*=8.1 Hz). ¹³C NMR (126 MHz, DMSO- d_6) δ : 21.1, 21.1, 45.3, 53.4, 54.8, 127.6, 127.7, 129.6, 130.2, 134.6, 135.1, 137.5, 144.5, 145.5, 149.6, 163.4. MS (ES), *m/z* (I_{rel} , %): 492.0 [M+H]⁺. Anal. calcd for C₂₂H₂₅N₃O₄S₃, %: C, 53.75; H, 5.13; N, 8.55; S, 19.56. Found, %: C, 53.69; H, 5.06; N, 8.37; S, 19.64.

4.4 In Vitro anticancer screening of the tested compounds

4.4.1 One dose full NCI 60 cell panel assay

Synthesized compounds were submitted to the National Cancer Institute NCI, Bethesda, Maryland, U.S.A., under the Developmental Therapeutic Program DTP. The cell line panel engaged a total of 60 different human tumor cell lines derived from nine cancer types, including Lung, Colon, Melanoma, renal, ovarian, brain, leukemia, breast, and prostate. Primary *in vitro* one dose anticancer screening was initiated by cell inoculating of each 60 panel lines into a series of standard 96-well microtiter plates at 5000–40000 cells/well in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine

4.4.2 NCI 60 cell panel COMPARE correlations.

Compounds having similar activity profiles often have similar mechanisms of action and resistance. In order to evaluate the likeness of new compounds with the drugs already present in NCI databases, we need to perform a similarity assessment. A method has been developed using the Pearson correlation coefficient (PCC) as a comparison criterion (COMPARE analysis) [https://dtp.cancer.gov/databases_tools/docs/compare/compare_methodology.htm#specon]. The graph of mean values for compounds was subsequently used to run the COMPARE algorithm from the Developmental Therapeutics Program, NCI, and calculate the correlation coefficient concerning compounds from the standard agent database with a known mechanism of action. The following scale of interpretation of pair correlation coefficients was used:¹⁶ insignificant (0.00-0.30), weak (0.30-0.50), moderate (0.50-0.70), high (0.70-0.90), and a very high (0.9-1.0) connection with a standard drug. Accordingly, pairwise correlation coefficients greater than 0.3 were used as a threshold to assess whether seeded compounds and standard agents could have a similar mechanism of action.

References

- 1 Petrou A., Fesatidou M., and Geronikaki A. (2021) Thiazole Ring-A Biologically Active Scaffold. *Molecules*, 26 (11) 3166. doi: 10.3390/molecules26113166.
- 2 Sharma P.C., Bansal K.K., Sharma A., Sharma D., and Deep A. (2020) Thiazole-containing compounds as therapeutic targets for cancer therapy. *Eur J. Med. Chem.*, 188 112016. doi: 10.1016/j.ejmech.2019.112016.
- 3 Ayati A., Emami S., Moghimi S., and Foroumadi A. (2019) Thiazole in the targeted anticancer drug discovery. *Future Med. Chem.*, 11(15) 1929-1952. doi: 10.4155/fmc-2018-0416.
- 4 Sahil, Kaur K., and Jaitak V. (2022) Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. *Curr. Med. Chem.*, 29 (29) 4958-5009. doi: 10.2174/0929867329666220318100019.
- 5 Sabry M.A., Ghaly M.A., Maarouf A.R., and El-Subbagh H.I. (2022) New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: Synthesis, molecular modeling simulations and anticancer activity. *Eur. J. Med. Chem.*, 241 114661. doi: 10.1016/j.ejmech.2022.114661.
- 6 Piao W., Yoo J., Lee D.K., Hwang H.J., and Kim J.H. (2001) Induction of G(2)/M phase arrest and apoptosis by a new synthetic anticancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. *Biochem. Pharmacol.*, 62 (11) 1439-1447. doi: 10.1016/s0006-2952(01)00796-1.
- 7 Kwak S.H., Bang S.C., Seo H.H., Shin H.R., Lee K.C., Le Hoang T.A., and Jung S.H. (2006) Evaluation of anticancer activity of 4-vinyl-1-arylsulfonylimidazolidinones. *Arch. Pharm. Res.*, 29 (9) 721-727. doi: 10.1007/BF02974070.
- 8 Kachaeva M.V., Pilyo S.G., Zhirnov V.V., and Brovarets V.S. (2019) Synthesis, characterization, and in vitro anticancer evaluation of 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles. *Med. Chem. Res.*, 28 71–80. doi: 10.1007/s00044-018-2265-y.
- 9 Pilyo S.G., Kozachenko O.P., Zhirnov V.V., Kachaeva M.V., Kobzar O.L., Vovk A.I., and Brovarets V.S. (2020) Synthesis and anticancer activity of 5-sulfonyl derivatives of 1,3-oxazole-4-carboxylates. *Ukr. Bioorg. Acta.*, 15 (2) 13-21. doi: 10.15407/bioorganica2020.02.013.
- 10 Mehrotra R., Jangir D.K., Agarwal S., Ray B., Singh P., and Srivastava A.K. (2013) Interaction studies of anticancer drug lomustine with calf thymus DNA using surface enhanced raman spectroscopy. *NAPAN.*, 28 (4) 273–277. doi: 10.1007/s12647-013-0086-5.
- 11 Saha P., Debnath C., and Bérubé G. (2013) Steroid-linked nitrogen mustards as potential anticancer therapeutics: a review. J. Steroid Biochem. Mol. Biol., 137 271-300. doi: 10.1016/j.jsbmb.2013.05.004.
- 12 Jayaram H.N., Lui S., Plowman J., Pillwein K., Reardon A., Elliott W.L., and Weber G. (1990) Oncolytic activity and mechanism of action of a novel L-cysteine derivative, L-cysteine, ethyl ester, S-(N-methylcarbamate) monohydrochloride. *Cancer Chemother. Pharmacol.*, 26 (2) 88-92. doi: 10.1007/BF02897250.
- 13 van Osdol W.W., Myers T.G., Paull K.D., Kohn K.W., and Weinstein J.N. (1994) Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Nat. Cancer Inst., 86 (24) 1853-1859. doi: 10.1093/jnci/86.24.1853.
- 14 Vrabel V., Pavelcik F., Kelloe E., Miertus S., Konecny V., and Lokaj J. (1985) The crystal and electron structure of N-(2,2,2-trichloro-1-morpholino-ethyl)formamide. *Collection Czechoslovak Chem. Commun.*, 50 (8) 1619-1628. doi: 10.1135/cccc19851619.
- 15 Kornienko A., Zyabrev V., and Brovarets V. (2014) New method for synthesis of 4-tosyl-5-chlorothiazole-2-thiol derivatives. *Rus. J. Gen. Chem.*, 84 (11) 2273-2274. doi: 10.1134/S1070363214110401.

16 Mukaka M. A. (2012) Guide to Appropriate Use of Correlation Coefficient in Medical Research. *Malawi Med. J.*, 24 69-71. doi: 10.4236/jwarp.2015.77047.

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).