Electrocntic Supplementary Information

Representative spectral data for:

2-(Aminomethyl)benzimidazole/Cu$^{2+}$ immobilized on Fe$_3$O$_4$@SiO$_2$: a convenient magnetic nanocatalyst for click reaction of aryl halide/benzyl halide, sodium azide and terminal alkyne

Mostafa Mehdipoura, Mohammad Reza Khodabakhshia*

aApplied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Square, Mollasadra Ave. P.O. Box, 1435915371 Tehran, Iran
Instruments and reagents

All initial chemicals and materials were purchased from Merck and Aldrich. Also characterizations were carried out using following instruments: a) FT-IR: Shimadzu FT-IR-8400S spectrophotometer, b) ^1^H-NMR: Bruker Avance 500 MHz, c) SEM: KYKY- EM3200 at 26 KV, d) XRD: Jeoljdx-8030, e) TGA: Q50 V6.3 Build 189.

Characterization:

FT-IR spectra of Fe$_3$O$_4$, Fe$_3$O$_4$@SiO$_2$ and Fe$_3$O$_4$@SiO$_2$@AMBI/Cu are illustrated in figure S1. As can be seen, functional groups of Fe$_3$O$_4$, Fe$_3$O$_4$@SiO$_2$ and Fe$_3$O$_4$@SiO$_2$@AMBI/Cu can be seen in FT-IR spectra. In FT-IR spectra of Fe$_3$O$_4$, a broad peak at around 500-600 cm$^{-1}$ is attributed to the Fe-O group. In Fe$_3$O$_4$@SiO$_2$ spectra, in addition of Fe-O peak, a broad peak at 1050-1250 cm$^{-1}$ is related to the presence of the Si-O group. Also in Fe$_3$O$_4$@SiO$_2$@AMBI/Cu spectra, in addition of all above peaks, C=C stretching peak and a characterization peak of N-H were appeared at 1649 cm$^{-1}$ and 3400 cm$^{-1}$, respectively.

![Figure S1. FT-IR spectra of a) Fe$_3$O$_4$, b) Fe$_3$O$_4$@SiO$_2$, and c) Fe$_3$O$_4$@SiO$_2$@AMBI/Cu](image)

The morphology and the size of the synthesized Fe$_3$O$_4$@SiO$_2$@AMBI/Cu were studied by SEM and TEM and they are showed in figure S2. Consequently, nanoparticles were homogenously dispersed on Fe$_3$O$_4$ as a core with an average diameter of about 20 nm. These analysis revealed that no roughness and aggregation be present in the surface of Fe$_3$O$_4$@SiO$_2$@AMBI/Cu.
The purity and crystalline structure of the synthesized Fe$_3$O$_4$@SiO$_2$@AMBI/Cu were studied using X-ray diffraction. The XRD pattern of the powders of final nanocatalyst is indicated in figure S3. Corresponding peaks of Fe$_3$O$_4$ in XRD were observed at 2θ = 30.0, 35.0, 42.0, 52.0, 56.0 and 62.0 which are similar to the pattern of reported Fe$_3$O$_4$ nanoparticles before [19, 30].

EDX analyses is performed to study the elemental compositions of Fe$_3$O$_4$@SiO$_2$@AMBI/Cu. The EDX spectrum of Fe$_3$O$_4$@SiO$_2$@AMBI/Cu is presented in figure S4. In this spectrum, existence of Fe and O proved the synthesis of Fe$_3$O$_4$. In addition, EDX shows the presence of Cu, N, and Si which proved the successful synthesis of Fe$_3$O$_4$@SiO$_2$@AMBI/Cu.
The TGA analysis of the synthesized Fe₃O₄@SiO₂@AMBI/Cu was taken to understand the stability of it (figure S5). In TGA, the weight loss under 200 °C is related to volatile compounds, the weight loss at about 500 °C is related to decomposition of ligand, and also due to the existence of Cu and Fe₃O₄, it didn’t decompose completely at temperatures above 800 °C.
Copies of ^1H and ^{13}C NMR spectra for some compounds

^1H NMR spectra for compound 4a
13C NMR spectra for compound 4a
Dept spectra for compound 4a
1H NMR spectra for compound 4b
13C NMR spectra for compound 4b
Dept spectra for compound 4b
1H NMR spectra for compound 6a
13C NMR spectra for compound 6a
DEPT spectra for compound 6a
1H NMR spectra for compound 6c
13C NMR spectra for compound 6c
DEPT spectra for compound 6c
1H NMR spectra for compound 6e
13C NMR spectra for compound 6e
DEPT spectra for compound 6e
1H NMR spectra for compound 6l
13C NMR spectra for compound 6l
DEPT spectra for compound 6l