Model based multi-wavelength spectrophotometric method for calculation of formation constants of phenanthrenequinone thiosemicarbazone complexes with some metallic cations


Naser Samadi, Mina Salamati and Abdolhossein Naseri


In traditional spectrophotometric determination of stability constants of complexation, it is necessary to find a wavelength at which only one of the components has absorbance without any spectroscopic interference of the other reaction components. In the present work, a simple multi-wavelength model-based method has been developed to determine stability constants for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of all components are extracted using multi-wavelength model based method. In the present work spectrophotometric titration of several cationic metal ions with new synthetic ligand were studied in order to calculate the formation constant(s). In order to estimate the formation constants a chemometrics method, model based analysis was applied.


DOI: j.ccl.2013.03.002

Keywords: Complex formation ,Hard-modeling ,Multi-wavelength ,Spectrophotometry

How to cite this paper:

Samadi, N., Salamati, M., & Naseri, A. (2013). Model based multi-wavelength spectrophotometric method for calculation of formation constants of phenanthrenequinone thiosemicarbazone complexes with some metallic cationsNaser Samadi, Mina Salamati and Abdolhossein Naseri,*.Current Chemistry Letters, 2(2), 69-76.


References

Powis G.; Hacker M.P. (1991) The Toxicity of Anticancer Drugs, Press: Pergamon, New York.

Kappus H. (1986) Overview of enzyme systems involved in bioreduction of drugs and in redox cycling. Biochem. Pharmacol., 35, 1-6.

West D.X.; Liberta A.E.; Padhye S.B.; Chikate R.C.; Sonawane P.B.; Kumbhar A.S.; Yerande R.G. (1993) Thiosemicarbazone complexes of copper(II): structural and biological studies. Coordin. Chem. Rev., 123, 49-71.

Pierpont C.G.; Buchanan R.M. (1981) Transition metal complexes of o-benzoquinone, o-semiquinone and catecholate ligands. Coordin. Chem. Rev., 38, 45-87.

Abakumov G.A.; Cherkasov V.K.; Abakumova L.G.; Nevodchikov V.I.; Druzhkov N.O.; Makarenko N.P.; Kursky J.A. (1995) Reaction on the addition of some organometallic compounds to 3,6-di-tert-butyl-o-benzoquinone: new o-quinones. J. Organometal. Chem., 491, 127-133.

Saenge W. (1984) Principles of Nucleic Acid Structure. Press: Springer-Verlag, New York.

El-Sherif A. A. (2012) potentiometric determination of the stability constants of trimethyltin(iv) chloride complexes with imino-bis(methylphosphonic acid) in water and dioxane–water mixtures. J. Solution Chem., 41, 392-409.

Karadag R.; Erdogan G.; Bayar M.; Dolen E. (2007) Determining stability constants of naringenin (4',5,7-trihydroxy flavanone) complexes with aluminium (III) and iron (II) by potentiometric and spectrophotometric methods. Rev. Anal. Chem., 26, 169-186.

Saha S.; Tiwary A.; Mukherjee A. (2008) Charge transfer interaction of 4-acetamidophenol (paracetamol) with 2,3-dichloro-1,4-naphthoquinone: A study in aqueous ethanol medium by UV–vis spectroscopic and DFT methods. Spectrochim. Acta Part A, 71, 835-840.

Rojas-Hernández A.; Botello J.C.; Pacheco-Hernández M.D.L.; Gutiérrez A.; Domínguez J.M.; Espinosa G.; Ramírez-Silva M.T. (2008) Equilibrium constants determination of the species formation in the Al(III)-H2O system by integration of 27. Al-NMR signals and fitting with species fractions. J. Mex. Chem. Soc., 52 (1), 47-53.

Zvimb J.; Jackso G. (2007) Thermodynamic and spectroscopic study of the interaction of Cu(II), Ni(II), Zn(II) and Ca(II) ions with 2-amino-N-(2-oxo-2-(2-(pyridin-2-yl)ethyl amino)ethyl) acetamide, a pseudo-mimic of human serum albumin. Polyhedron, 26, 2395–2404.

Atabey H.; Sari H. (2011) Potentiometric, theoretical, and thermodynamic studies on equilibrium constants of aurintricarboxylic acid and determination of stability constants of its complexes with Cu2+, Ni2+, Zn2+, Co2+, Hg2+, and Pb2+ metal ions in aqueous solution, J. Chem. Eng. Data, 56 (10), 3866-3872.

Ghosh A.K. (2005) Spectrophotometric study of molecular complex formation of asphaltene with two isomeric chloranils. Fuel, 84, 153-157.

Tounsi N.; Dupont L.; Mohamadou A.; Aplincourt M.; Plantier-Royon R.; Massicot F.; Harakat D.; Portella C. (2005) Thermodynamic and spectroscopic studies of copper (II) complexes with three bis(amide) ligands derived from L-tartaric acid. J. Inorg. Biochem. 99, 2423–2435.

Bahram M.; Pesyan N.N.; HYPERLINK "http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=24491021800&zone=" \o "Show author details"Naseri A.; Tasbihforosh M. (2011) Determination of stability constants of 5-(2-hydroxybenzylidene)-2- thioxodihydropyrimidine-4,6(1H,5H)-dione with copper(II) and mercury(II) ions. Turk. J. Chem., 35(2), 255-264.

Hendriksen B.A.; Sanchez-Felix M.V.; Tam K.Y. (2002) A new multiwavelength spectrophotometric method for the determination of the molar absorption coefficients of ionizable drugs. Spectrosc. Lett., 35 (1), 9-19.

Meloun M.; Bordovská S.; Syrový T.; Vrána A. (2006) Tutorial on a chemical model building by least-squares non-linear regression of multiwavelength spectrophotometric pH-titration data. Anal. Chim. Acta, 580, 107-121.

Emara A.; Saleh A.; Adly O. (2007) Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diamino-propane. Spectrochim. Acta Part A, 68, 592–604.

Ghasemi J.; HYPERLINK "http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7003844592&zone=" \o "Show author details" Niazi A.; Maeder M. (2007) Spectrophotometric studies on the protonation and nickel complexation equilibria of 4-(2-pyridylazo) resorcinol using global analysis in aqueous solution, J. Braz. Chem. Soc., 18 (2) , 267-272.

Puxty G.; Maeder M.; Hungerbuhler K. (2006) Tutorial on the fitting of kinetics models to multivariate spectroscopic measurements with non-linear least-squares regression, Chemom. Intel. Lab. Syst. 81, 149-164.

Kriesten E.; Mayer D.; Alsmeyer F.; Minnich C.B.; Greiner L.; Marquardt W. (2008) Identification of unknown pure component spectra by indirect hard modeling. Chemom. Intel. Lab. Syst. 93, 108-119.

Hasani M.; Shariati-Rad M.; Abdollahi H. (2009) Application of soft- and hard-modelling approaches to resolution of kinetics of electron donor–acceptor complex formation of 2,3-dichloro-5,6-dicyano-1, 4-benzoquinone with imipramine in different solutions. Anal. Chim. Acta, 636, 175–182.

Shariati-Rad M.; Hasani M. (2009) Principle component analysis (PCA) and second-order global hard-modelling for the complete resolution of transition metal ions complex formation with 1,10-phenantroline. Anal. Chim. Acta, 648, 60-70.

Mas S.; de Juan A.; Lacorte S.; Tauler R. (2008) Photodegradation study of decabromodiphenyl ether by UV spectrophotometry and a hybrid hard and soft-modelling approach. Anal. Chim. Acta, 618, 18-28.

de Juan A.; Maeder M.; Martı́nez M.; Tauler R. (2000) Combining hard- and soft-modeling to solve kinetic problems. Chemom. Intel. Lab. Syst. 54, 123-141.

Afrasiabi Z.; Sinn E.; Padhye Sh.; Dutta S.; Padhye S.; Newton C.; Anson C.; Powelld A.; (2003) Transition metal complexes of phenanthrenequinone thiosemicarbazone as potential anticancer agents: synthesis, structure, spectroscopy, electrochemistry and in vitro anticancer activity against human breast cancer cell-line, T47D. J. Inorg. Biochem. 95, 306-314.

West D.X.; Yang Y.; Klein T.L.; Goldberg K.I.; Liberta A.E.; Valdes-Martinez J.; Toscano, R.A. (1995) Binuclear copper(II) complexes of 2-hydroxyacetophenone 4N-substituted thiosemicarbazones. Polyhedron, 14, 1681-1693.

West D.X.; Gebremedhin H.; Butcher R.J.; Jasinski J.P.; Liberta A.E. (1993) Structures of nickel(II) and copper(II) complexes of 2-acetylpyridine azacyclothiosemicarbazones. Polyhedron, 12, 2489-2497.