Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals


Bagher Eftekhari-Sis and Saleh Vahdati-Khajeh


A green and efficient method for the preparation of 5-aryl-4-hydroxy-2-methyl-1H-pyrrole-3-carboxylic acid esters and 6-aryl-3-methylpyridazine-4-carboxylic acid esters via three-component reaction of arylglyoxal hydrates with β-dicarbonyl compounds in the presence of ammonium acetate and hydrazine hydrate using water as solvent under ultrasonic irradiation was reported. The reactions proceeded rapidly and afforded the corresponding pyrroles and pyridazines in good to high yields in very short reaction time.


DOI: j.ccl.2013.02.002

Keywords: Pyrroles, Pyridazines, Ultrasound, Multi-component reactions, Green chemistry

How to cite this paper:

Eftekhari-Sis, B., & Vahdati-Khajeh, S. (2013). Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals.Current Chemistry Letters, 2(2), 85-92.


References

1. (a) Eftekhari-Sis B., Zirak M., and Akbari A. (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., doi: 10.1021/cr300176g. (b) Akbari A. (2012) Phenylglyoxal. Synlett, 23, 951-952.

2. Jones R. A. (1992) Pyrroles, Part II, Wiley, New York.

3. Gilchrist T. L. (1999) Synthesis of aromatic heterocycles. J. Chem. Soc., Perkin Trans. 1, 2849-2866.

4. (a) Thompson R. B. (2001) Foundations for blockbuster drugs in federally sponsored research. FASEB J., 15, 1671-1676. (b) Mach R. H., Huang Y., Freeman R. A., Wu L., Blair S., and Luedtke R. R. (2003) Synthesis of 2-(5-bromo-2,3-dimethoxyphenyl)-5-(aminomethyl)-1H-pyrrole analogues and their binding affinities for dopamine D2, D3, and D4 receptors. Bioorg. Med. Chem., 11, 225-233. (c) Bleicher K. H., Wüthrich Y., Adam G., Hoffmann T., and Sleight A. J. (2002) Parallel solution- and solid-phase synthesis of spiropyrrolo-pyrroles as novel neurokinin receptor ligands. Bioorg. Med. Chem. Lett., 12, 3073-3076. (d) Borthwick A. D., Crame A. J., Ertl, P. F., Exall, A. M., Haley T. M., Hart G. J., Mason A. M., Pennell A. M. K., Singh O. M. P., Weingarten G. G., and Woolven J. M. (2002) Design and synthesis of pyrrolidine-5,5-trans-lactams (5-oxohexahydropyrrolo[3,2-]pyrroles) as novel mechanism-based inhibitors of human cytomegalovirus protease. 2. potency and chirality. J. Med. Chem., 45, 1-18. (e) Lee H., Lee J., Lee S., Shin Y., Jung W. H., Kim J. –H., Park K., Kim K., Cho H. S., Ro S. Lee S. Jeong S., Choi T., Chung H. –H., and Koh J. S. (2001) A novel class of highly potent, selective, and non-peptidic inhibitor of ras farnesyltransferase (FTase). Bioorg. Med. Chem. Lett., 11, 3069-3072. (f) Brower J. O., Lightner D. A., and McDonagh A. F. (2001) Aromatic congeners of bilirubin: synthesis, stereochemistry, glucuronidation and hepatic transport. Tetrahedron, 57, 7813-7827. (g) Seki M., and Mori K. (2001) The absolute configuration of axinellamine A, a pyrrole alkaloid of the marine sponge Axinella sp., was determined as R by synthesizing its (S)-isomer. Eur. J. Org. Chem., 503-506.

5. (a) Higgins S. A. (1997) Conjugated polymers incorporating pendant functional groups-synthesis and characterization. Chem. Soc. Rev., 26, 247-257. (b) Lee C. –F., Yang L. –M., Hwu T. –Y., Feng A. –S., Tseng J. –C., and Luh T. –Y. (2000) One-pot synthesis of substituted furans and pyrroles from propargylic dithioacetals. new annulation route to highly photoluminescent oligoaryls. J. Am. Chem. Soc., 122, 4992-4993. (c) Ogawa K., and Rasmussen R. C. (2003) A simple and efficient route to N-functionalized dithieno[3,2-:2',3'-]pyrroles:  fused-ring building blocks for new conjugated polymeric systems. J. Org. Chem., 68, 2921-2928. (d) Tietze L. F., Kettschau G., Heuschert U., and Nordmann G. (2001) Highly efficient synthesis of linear pyrrole oligomers by twofold Heck reactions. Chem. Eur. J., 7, 368-373.

6. (a) Trofimov B. A., Sobenina L. N., Demenev A. P., and Mikhaleva A. I. (2004) C-Vinylpyrroles as pyrrole building blocks. Chem. Rev., 104, 2481-2506. (b) Liu J. –H., Yang Q. –C., Mak T. C. W., and Wong H. N. C. (2000) Highly regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles: a formal total synthesis of Lukianol A. J. Org. Chem., 65, 3587-3595. (c) Fürstner A., and Weintritt H. (1998) Total synthesis of roseophilin. J. Am. Chem. Soc., 120, 2817-2825. (d) Kim J. T., Kel'in A. V., and Gevorgyan V. (2003) 1,2-Migration of the thio group in allenyl sulfides: efficient synthesis of 3-thio-substituted furans and pyrroles. Angew. Chem., Int. Ed., 42, 98-101. (e) Bullington J. L., Wolff R. R., and Jackson P. E. (2002) Regioselective preparation of 2-substituted 3,4-diaryl pyrroles:  a concise total synthesis of Ningalin B. J. Org. Chem., 67, 9439-9442. (f) Attanasi O. A., De Crescentini L., Favi G., Filippone P., Mantellini F., and Santeusanio S. (2002) Straightforward entry into 5-hydroxy-1-aminopyrrolines and the corresponding pyrroles from 1,2-diaza-1,3-butadienes. J. Org. Chem., 67, 8178-8181. (g) Khalili B., Jajarmi P., Eftekhari-Sis B., and Hashemi M. M. (2008) Novel one-pot, three-component synthesis of new 2-alkyl-5-aryl-(1H)-pyrrole-4-ol in water. J. Org. Chem., 73, 2090-2095. (h) San Feliciano A., Caballero E., Pereira J. A. P., and Puebla P. (1989) Pyrrole derivatives from α-ketoaldehydes. Tetrahedron 45, 6553-6562.

7. Benson S. C., Palabrica C. A., and Snyder J. K. (1987) Indole as a dienophile in inverse electron demand Diels-Alder reactions. 5H-Pyridazino[4,5-b]indoles as cycloadducts with 3,6-dicarbomethoxy-1,2,4,5-tetrazine. J. Org. Chem., 52, 4610-4614.

8. (a) Contreras J. –M., Rival Y. M., Chayer S., Bourguignon J. –J., and Wermuth C. G. (1999) Aminopyridazines as acetylcholinesterase inhibitors. J. Med. Chem., 42, 730-741. (b) Wermuth C. –G. (1998) Search for new lead compounds: The example of the chemical and pharmacological dissection of aminopyridazines. J. Heterocycl. Chem., 35, 1091-1100. (c) Gelain A. (2005) Pyridazine derivatives as novel acyl-coa:cholesterol acyltransferase (acat) inhibitors. J. Heterocycl. Chem., 42, 395-400.

9. (a) Groziak M. P. (2005) Six-membered ring systems: iazines and benzo derivatives, in: Gribble G. W., and Joule J. A. (Eds.), Progress in Heterocyclic Chemistry. Elsevier, Amsterdam, Vol. 16, pp. 347-384 (b) Groziak M. P. (2005) Six-membered ring systems: diazines and benzo derivatives, in: Gribble G. W., and Joule J. A. (Eds.), Progress in Heterocyclic Chemistry. Elsevier, Amsterdam, Vol. 17, pp. 304-336. (c) Naud S., Pipelier M., Viault G., Adjou A., Huet F., Legoupy S., Aubertin A. –M., Evain M., and Dubreuil D. (2007) Synthesis of polyhydroxylated pyrano-pyrrole derivatives from carbohydrate precursors. Eur. J. Org. Chem., 3296-3310.

10. (a) Sauer J., Heldmann D. K., Hetzenegger J., Krauthan J., Sichert H., and Schuster J. (1998) 1,2,4,5-Tetrazine: synthesis and reactivity in [4+2] cycloadditions. Eur. J. Org. Chem., 2885-2896. (b) Yu Z. –X., Dang Q., and Wu Y. –D. (2001) Aromatic dienophiles. 1. A theoretical study of an inverse-electron demand Diels−Alder reaction between 2-aminopyrrole and 1,3,5-triazine. J. Org. Chem., 66, 6029-6036.

11. (a) Özer G., Saraçoğlu N., and Balci M. (2003) Synthesis and chemistry of unusual bicyclic endoperoxides containing the pyridazine ring. J. Org. Chem., 68, 7009-7015. (b) Hamasaki A., Ducray R., and Boger D. L. (2006) Two novel 1,2,4,5-tetrazines that participate in inverse electron demand Diels−Alder reactions with an unexpected regioselectivity. J. Org. Chem., 71, 185-193. (c) Attanasi O. A., Favi G., Filippone P., Perrulli F. R., and Santeusanio S. (2009) A novel and convenient protocol for synthesis of pyridazines. Org. Lett. 11, 309-312. (d) Hieda M., Omura K., and Yurugi S. (1972) Studies on the syntheses of N-heterocyclic compounds. XI. Syntheses of 3-phenyl-pyridazino[4,5-]-and 5-phenyl-pyridazino-[4,5-]pyridazine derivatives. Yakugaku Zasshi 92, 1327-1332.

12. (a) Mason T. J., and Peters D. (2002) Practical Sonochemistry. Second ed., Ellis Horwood, London. (b) Luche J. L. (1998) Synthetic Organic Sonochemistry. Plenum, New York. (c) Mason T. J., and Lorimer J. P. (1988) Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry. Ellis Horwood, Chichester.

13. Mason T. J. (2007) Sonochemistry and the environment-providing a “green” link between chemistry, physics and engineering. Ultrason. Sonochem., 14, 476-483.

14. Mason T. J. (1991) Practical Sonochemistry. Ellis Horwood, 18.

15. (a) Satyanarayana V. S. V., and Sivakumar A. (2011) Ultrasound-assisted synthesis of 2,5-dimethyl-N-substituted pyrroles catalyzed by uranyl nitrate hexahydrate. Ultrason. Sonochem., 18, 917-922. (b) Zhang Z. –H., Li J. –J., and Li T. –S. (2008) Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions. Ultrason. Sonochem., 15, 673-676. (c) Mantu D., Moldoveanu C., Nicolescu A., Deleanu C., and Mangalagiu I. I. (2009) A facile synthesis of pyridazinone derivatives under ultrasonic irradiation. Ultrason. Sonochem., 16, 452-454.

16. (a) Eftekhari-Sis B., Abdollahifar A., Hashemi M. M., and Zirak M. (2006) Stereoselective synthesis of β-amino ketones via direct Mannich-type reactions, catalyzed with ZrOCl2·8H2O under solvent-free conditions. Eur. J. Org. Chem., 5152-5157. (b) Eftekhari-Sis B., Zirak M., Akbari A., and Hashemi M. M. (2010) Synthesis of new 2-aryl-4-chloro-3-hydroxy-1H-indole-5,7-dicarbaldehydes via Vilsmeier-Haack reaction. J. Heterocycl. Chem., 47, 463-467.

17. Riley H. A., and Gray A. R. (1943) Organic Syntheses. Wiley & Sons, New York, NY; Collect. Vol. II, p. 509.

18. Rimaz M., and Khalafy J. (2010) Arkivoc, ii, 110-117.