Chemical recycling of semi-rigid polyurethane foams by using an eco-friendly and green method


Mir Mohammad Alavi Nikje and Khan Mohammad Tavassoli


Degradation of integral skin polyurethane foams (ISPUFs) was performed using diethylene glycol (DEG)/-sorbitol/water ternary green solvent system as an effective polyurethane bond destroying agent in combination with basic catalysts, namely sodium and potassium hydroxides, sodium acetate and sodium carbonate. The effects of studied catalysts were investigated and data showed the high performances of sodium hydroxide in recycling process. After completion of the reactions, appeared split phases contained recycled polyols in the upper phase. Reactions were studied using various DEG/-sorbitol/water ratios and the recovered polyols were characterized and data compared with an authentic sample.


DOI: j.ccl.2012.7.002

Keywords: Glycolysis ,Polyurethane waste ,Recycling ,Integral skin foam ,Diethylene glycol

How to cite this paper:

Nikje, M & Tavassoli, K. (2012). Chemical recycling of semi-rigid polyurethane foams by using an eco-friendly and green method.Current Chemistry Letters, 1(4), 175-180.


References

1. Report (2002) New forecasts for polypropylene polystyrene and polyurethane, Gobi International. www.gobi.co.uk.

2. Report (2008) published on Rooftherm Polyurethane Green Technologies Company. www.roofthem.co.uk.

3. Hopper J. F. G., Parrinello G., Parfondry A., Kroesen K.W. (1992) Recent Developments in the Chemical Recycling of Flexible Polyurethanes. In: Utech 92 Conference, The Hague, the Netherlands.Mar 31–Apr 2.

4. Scheirs J. (1998) Polymer recycling: Science, technology and applications. John Wiley & Sons Ltd, England.

5. Hopper J. F. G., Parrinello G., Parfondry A., Kroesen K. W. (1992) Recent developments in the chemical recycling of flexible polyurethanes. Cell Polym., 11, 388-396.

6. Hicks D.A., Krommenhoek M., Sonderbery D. J., Hopper J. F. G. (1994) Polyurethanes recycling and waste management. Cell Polym., 13, 259 -276

7. Van Der Wal H. R. (1994). New Chemical Recycling Process for Polyurethanes. J. Reinf. Plast. Comp., 13, 87 -96.

8. Simioni F., Modesti M. (1993) Glycolysis of flexible polyurethane foams. Cell Polym., 12, 337 -348.

9. Gassan M., Naber B., Neiss V., Moeckel P., Weissflog W. (1994) Preparation of recyclatepolyols and the use thereof in the preparation of polyurethanes. US Patent 5357006.

10. Datta J., Pasternak S. (2005) Oligourethane glycols obtained in glycolysis of polyurethane foam as semi-finished products for cast urethane elastomers preparation. Polimery, 50, 352-357.

11. Datta J., Rohn M. (2007) Glycolysis of polyurethane wastes. Part I. Glycolysis agents and catalysts. Polimery, 52, 579 -582.

12. Datta J., Rohn M. (2007) Glycolysis of polyurethane wastes. Part II. Purification and use of glycolysis products. Polimery, 52, 627-633.

13. Datta J., Pasternak S. (2008) Syntheses and properties of polyurethanes got from glycolysis products obtained from waste polyurethane foams. Polimery, 53, 27-32.

14. Molero C., Lucas A. D., Rodriguez J. F. (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis with new catalysts. Polym Degrad Stabil., 91, 894 -901.

15. Alavi Nikje M. M., Haghshenas M., Bagheri Garmarudi A. (2006) Glycolysis of waste polyurethane integral skin foams from steering wheel. Polym Plast Technol ., 45, 569-573.

16. Alavi Nikje M. M., Haghshenas M., Bagheri Garmarudi A. (2006) Preparation and application of glycolysed polyurethane integral skin foams recyclate from automotive wastes. Polym Bull., 56, 257-265.

17. Alavi Nikje M. M., Haghshenas M., Bagheri Garmarudi A. (2007) Split-phase "glycolysis of flexible PUF wastes and application of recovered phases in rigid and flexible foams production. Polym Plast Technol., 46, 265-271.

18. Alavi Nikje M. M., Nikrah M., Haghshenas M. (2007) Glycerin as a new glycolysing agent for chemical recycling of cold cure polyurethane foam wastes in “split-phase” condition. Polym Bull., 58, 411-423.

19. Alavi Nikje, M. M., Nikrah, M. (2007) Microwave assisted glycolysis of polyurethane cold cure foam wastes from automotive seats in "split-phase" condition. Polym Plast Technol., 46, 409-415.

20. Alavi Nikje, M. M., Nikrah, M. (2007) Chemical recycling and liquefaction of rigid polyurethane foam wastes through microwave assisted glycolysis process. J Macromol Sci A., 44, 613-617.

21. Alavi Nikje, M. M., Nikrah, M., Haghshenas, M. (2007) Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polym Bull., 59, 91-104.

22. Alavi Nikje, M. M., Haji Agha Mohammadi, F. (2008) Microwave-assisted PU bond cleavage via hydroglycolysis process at atmospheric pressure. J. Cell Plast., 44, 367-380.

23. Alavi Nikje, M. M., Bagheri Garmarudi, A. (2010) Regeneration of polyol by pentaerythritol-assisted glycolysis of flexible polyurethane foam wastes. Iran Polym J., 19, 287 -295.