Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water


Sandip Kale, Sandeep Kahandal, Shamrao Disale and Radha Jayaram


The conventional and microwave assisted multicomponent synthesis of disubstituted 1,2,3-triazoles from terminal alkynes and in situ generated organic azide using copper apatite catalyst in water is reported. The catalytic activity is intimately connected to the basicity of the catalyst. The best activities were observed with the copper hydroxyapatite. The catalyst could be used ten times without further treatment and activation under controlled microwave heating. The protocol was also applicable for various alkynes and halides which affords desired product in good to excellent yield.


DOI: j.ccl.2012.3.002

Keywords: Multicomponent reaction ,Solid base catalyst ,Water ,Green solvent ,Microwave

How to cite this paper:

Kale, S., Kahandal, S., Disale, S. & Jayaram, R. (2012). Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water.Current Chemistry Letters, 1(2), 69-80.


References

1.Dömling, A. (2006) Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev., 106, 17-89.

2.Chao-jun, L. (2005) Organic Reactions in Aqueous Media with a Focus on Carbon−Carbon Bond Formations:  A Decade Update. Chem. Rev., 105, 3095-3166.

3.Hiddesh, H. (1995) Heterogeneous Basic Catalysis. Chem. Rev., 95, 537-550.

4.Buckle, D. R.; Rockell, C. J.; Smith, H.; Spicer, B. A. (1983) Studies on v-triazoles. 7. Antiallergic 9-oxo-1H, 9H-benzopyrano [2,3-d]-v-triazoles. J. Med. Chem., 26, 251-254.

5.Damodiran, M.; Muralidharan D.; Paramasivan T. (2009) Regioselective synthesis and biological evaluation of bis(indolyl) methane derivatized 1,4-disubstituted 1,2,3-bistriazoles as anti-infective agents. Bioorg. Med. Chem. Lett., 19, 3611-3614.

6.Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C. F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. (1994) 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole 2'',2''-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J. Med. Chem., 37, 4185-4194.

7.Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Zurenko, G. E.; Hamel, J. C.; Schadt, R. D.; Stapert, D.; Yagi, B. H. (2000) J. Med. Chem., 43, 953-970.

8.Chassaing, S.; Kumarraja, M.; Sido, A. S.; Pale, P.; Sommer, J. (2007) Click Chemistry in CuI-zeolites:  The Huisgen [3 + 2]-Cycloaddition. Org. Lett., 9, 883-886.

9.Lipshutz, B. H.; Taft, B. R. (2006) Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angew. Chem., Int. Ed., 45, 8235-8238.

10.Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin V.V.; Jia G. (2005) Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides. J. Am. Chem. Soc., 127, 15998-15999.

11.Beckmann, H. S. G.; Wittmann, V. (2007) One-Pot Procedure for Diazo Transfer and Azide−Alkyne Cycloaddition:  Triazole Linkages from Amines. Org. Lett., 9, 1-4.

12.Stan, G.; Brian, H. M.; Peter, J. L. M. Q.; Harlof , C. P. F. R.; Roel, W. W.; Richard, H.B.; Floris, L.V. D.; Floris, P. J. T. R. (2006) Chemoenzymatic Synthesis of Triazole-Linked Glycopeptides. Synthesis, 18, 3146-3152.

13.Karol, K. (2005) Efficient One-Pot Synthesis of 1,2,3-Triazoles from Benzyl and Alkyl Halides. Synlett, 16, 6, 943-946.

14.Alexandru, G.; Erick, C. Y.; Joachim, H.; Willi, B.; Narasaiah, B.; Oliver, R. (2006) A Facile Strategy to a New Fluorous-Tagged, Immobilized TEMPO Catalyst Using a Click Reaction, and Its Catalytic Activity. Synlett, 2767-2770.

15.Reddy, K. R.; Rajgopal, K.; Kantam, M. L. (2007) Copper-alginates: a biopolymer supported Cu(II) catalyst for 1,3-dipolar cycloaddition of alkynes with azides and oxidative coupling of 2-naphthols and phenols in water. Catal. Lett., 114, 36−40.

16.Sharghi, H.; Khalifeh, R.; Doroodmand, M. M. (2009) Copper Nanoparticles on Charcoal for Multicomponent Catalytic Synthesis of 1,2,3-Triazole Derivatives from Benzyl Halides or Alkyl Halides, Terminal Alkynes and Sodium Azide in Water as a “Green” Solvent. Adv. Synth. Cat., 351, 207-218.

17.Namitharan, K.; Kumarraja, M.; Pitchumani, K. (2009) CuII–Hydrotalcite as an Efficient Heterogeneous Catalyst for Huisgen [3+2] Cycloaddition. Chem. - Eur. J., 15, 2755-2758.

18.Sarmiento-Sanchez, J. I.; Ochoa-Teran, A.; Rivero, I. A. (2011) Conventional and microwave assisted synthesis of 1,4-disubstituted 1,2,3-triazoles from Huisgen cycloaddition. Arkivoc, 9,177-188.

19.Mori K.; Yamaguchi, K.; Takayoshi, H.; Mizugaki, T.; Ebitani, K.; Kaneda K. (2002) Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Efficient Heterogeneous Catalyst. J. Am. Chem. Soc., 124, 11572–11573.

20.Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B. (2004) Hydroxyapatite supported copper catalyst for effective three-component coupling. Tetrahedron Lett., 45, 7319-7321.

21.Chaudhari, P. S.; Salim, S. D.; Sawant R. V.; Akamanchi K. G. (2010) HYPERLINK "http://pubs.rsc.org/en/content/articlelanding/2010/gc/c0gc00053a" Sulfated tungstate: a new solid heterogeneous catalyst for amide synthesis. Green Chem., 12, 1707–1710.