Regioselective synthesis of 3-arylpyrido[2,3-]pyrazines by reaction of arylglyoxals with 2,3-diaminopyridine


Jabbar Khalafy, Ahmad Poursattar Marjani and Maryam Haghipour


A series of pyrido[2,3-]pyrazine derivatives were synthesized in good to excellent yields by condensation reactions of arylglyoxals with 2,3-diaminopyridine in dimethylformamide and ethanol at 90 oC.© 2013 Growing Science Ltd. All rights reserved.


DOI: j.ccl.2012.12.003

Keywords: 2,3-Diaminopyridine ,Arylglyoxals ,Pyrido[2,3-b]pyrazines ,Regioselective

How to cite this paper:

Khalafy, J., Marjani, A & Haghipour, M. (2013). Regioselective synthesis of 3-arylpyrido[2,3-]pyrazines by reaction of arylglyoxals with 2,3-diaminopyridine.Current Chemistry Letters, 2(1), 21-26.


References

Urlebm U. (1998) In: Schaumann E., (Ed): Methods of Organic Chemistry (Houben-Weyl), Thieme Stuttgart, New York, Vol. E9b/Part 2 (Hetarenes IV), 193-265.

Sako, M. (2003) In: Yamamoto Y. (Ed) Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, Thieme, Stuttgart, New York, Vol 16, 1269-1290 and refs cited therein.

Brown D. J. (2004) In: Taylor E. C., and Wipf P. (Ed): Quinoxalines: Supplement II, The Chemistry of Heterocyclic Compounds; John Wiley and Sons, New Jersey.

Dell A., Williams D. H., Morris H. R., Smith G. A., Feeney J., and Roberts G. C. K. (1975) Structure Revision of the Antibiotic Echinomycin. J. Am. Chem. Soc., 97, 2497-2502.

Gazit A., App H., McMahon G., Chen J., Levitzki A., and Bohmer F. D. (1996) Tyrphostins. 5. Potent Inhibitors of Platelet-Derived Growth Factor Receptor Tyrosine Kinase: Structure-Activity Relationships in Quinoxalines, Quinolines, and Indole Tyrphostins. J. Med. Chem., 39, 2170-2177.

Zhao Z., Leister W. H., Robinson R. G., Barnett S. F., Defeo-Jones D., Jones R. E., Hartman G. D., Huff J. R., Huber H. E., Duggan M. E., and Lindsley C. W. (2005) Discovery of 2,3,5-Trisubstituted Pyridine Derivatives as Potent Akt1 and Akt2 Dual Inhibitors. Bioorg. Med. Chem. Lett., 15, 905-909.

Bailly C., Echepare S., Gago F., and Waring M. (1999) Recognition Elements that Determine Affinity and Sequence-Specific Binding to DNA of 2QN, a Biosynthetic Bis-quinoline Analogue of Echinomycin. Anticancer. Drug. Des., 14, 291-303.

Ali M. M., Ismail M. M. F., EI-Gaby M. S. A., Zahran M. A., and Ammar T. A. (2000) Synthesis and Antimicrobial Activities of Some Novel Quinoxalinone Derivatives. Molecules, 5, 864-873.

Seitz L. E., Suling W. J., and Reynolds R. C. (2002) Synthesis and Antimycobacterial Activity of Pyrazine and Quinoxaline Derivatives. J. Med. Chem., 45, 5604-5606.

Jaso A., Zarranz B., Aldana I., and Monge A. (2005) Synthesis of New Quinoxaline-2-Carboxylate 1,4-Dioxide Derivatives as Anti-Mycobacterium Tuberculosis Agents. J. Med. Chem., 48, 2019-2025.

Gomtsyan A., Bayburt E. K., Schmidt R. G., Zheng G. Z., Perner R. J., Didomenico S., Koenig J. R., Turner S., Jinkerson T., Drizin I., Hannick S. M., Macri B. S., McDonald H. A., Honore P., Wismer C. T., Marsh K. C., Wetter J., Stewart K. D., Oie T., Jarvis M. F., Surowy C. S., Faltynek C. R., and Lee C. -H. (2005) Novel Transient Receptor Potential Vanilloid 1 Receptor Antagonists for the Treatment of Pain: Structure-Activity Relationships for Ureas with Quinoline, Isoquinoline, Quinazoline, Phthalazine, Quinoxaline, and Cinnoline Moieties. J. Med. Chem., 48, 744-752.

Perumal R. V., and Mahesh R. (2006) Synthesis and Biological Evaluation of a Novel Structural type of Serotonin 5-HT3 Receptor Antagonists. Bioorg. Med. Chem. Lett., 16, 2769-2772.

Crowley P. J., Lamberth C., Müller U., Wendeborn S., Nebel K., Williams J., Sageot O. -A., Carter N., Mathie T., Kempf H. -J., Godwin J., Schneiter P., and Dobler M. R. (2010) Synthesis and Fungicidal Activity of Tubulin Polymerisation Promoters. Part 1: Pyrido[2,3-]pyrazines. Pest. Manag. Sci., 66, 178-185.

(a) Zhou J., and Giannakakou P. (2005) Targeting Microtubules for Cancer Chemotherapy, Curr. Med. Chem. Anticancer Agents., 5, 65-71; (b) Honore S., Pasquier E., and Braguer D. (2005) Understanding Microtubule Dynamics for Improved Cancer Therapy. Cell. Mol. Life Sci., 62, 3039-3056; (c) Jordan M. A., and Wilson L. (2004) Microtubules as a Target for Anticancer Drugs. Nat. Rev. Cancer., 4 , 253-265; (d) Li Q., and Sham H. L. (2002) Discovery and Development of Antimitotic Agents that Inhibit Tubulin Polymerisation for the Treatment of Cancer. Expert Opin. Ther. Patents., 12, 1663-1702; (e) Jordan M. A. (2002) Mechanism of Action of Antitumor Drugs that Interact with Microtubules and Tubulin. Curr. Med. Chem. Anticancer Agents, 2, 1-17.

Riley H. A., and Gray A. R. (1943) Organic Syntheses, Wiley & Sons, New York, NY; Collect. Vol. II, p. 509.

Perrin D. D., and Armarego W. L. F. (1998) Purification of Laboratory Chemicals, 3th Ed, Pergamon Press, Oxford.