Synthesis and characterization of novel 4-(1-(4-(4-(4-aminophenyl)-1H-pyrazol-1-yl)-6-(4-(diethylamino)phenyl)-1,3,5-triazin-2-yl)-1H-pyrazol-4-yl)benzenamine luorescent ye for protein binding


Vikas S. Padalkar and N Sekar


Novel 4-(1-(4-(4-(4-aminophenyl)-1H-pyrazol-1-yl)-6-(4-(diethylamino)phenyl)-1,3,5-triazin-2-yl)-1H-pyrazol-4-yl)benzenamine fluorescent dye was synthesized by multistep synthesis from cyanuric chloride and phenyl acetonitrile. It has absorption at 360 nm with single emission at 497 nm having fairly good quantum yield (0.379). The intermediates and the dye were characterized by FT-IR, 1H NMR, 13C NMR and Mass spectral analysis. Its utility as biocompatible fluorescent dye was explained by conjugation with bovine serum albumin. The method is based on direct fluorescence detection of fluorophore labelled protein before and after conjugation. Purified fluorescent conjugates were subsequently analyzed by fluorimetry. The analysis showed that the tested conjugation reaction yielded fluorescent conjugates of the dye through carbodiimide chemistry.


DOI: j.ccl.2011.12.002

Keywords: Bioconjugation ,Bovine Serum Albumin 1,3,5-Triazine ,Pyrazole ,Fluorescence

How to cite this paper:

Padalkar, V & Sekar, N. (2012). Synthesis and characterization of novel 4-(1-(4-(4-(4-aminophenyl)-1H-pyrazol-1-yl)-6-(4-(diethylamino)phenyl)-1,3,5-triazin-2-yl)-1H-pyrazol-4-yl)benzenamine luorescent ye for protein binding.Current Chemistry Letters, 1(1), 1-12.


References

1Schrader T., and Koch S. (2007) Artificial protein sensors. Mol. Bio. Syst., 3, 241-248.

2(a) Fields S. (2001) Proteomics in genomel. Science, 291, 1221-1224. (b) Aebersold R.; and Mann M. (2003) Mass spectrometry-based proteomics. Nature, 422, 198-207. (c) Selkoe D. J. (2003) Folding proteins in fatal ways. Nature, 426, 900-904. (d) Johnson C. J., Zhukovsky N., and Cass A. E. G. (2008) Nanotechnology and molecular diagnostics. Proteomics, 8, 715-773.

3Kodadek T. (2001) Protein microarrays: prospects and problems. Chem. Biol., 8, 105-115.

4Benito-Pena E., Moreno-Bondi M. C., Orellana G., Maquieira K., and Amerongen A. V. (2005) Development of a novel and automated fluorescent immunoassay for the analysis of beta- lactam antibiotics. J. Agric. Food Chem., 53, 6635-6642.

5Wang J., Liu G., Engelhard M. H., and Lin Y. (2006) Sensitive Immunoassay of a Biomarker Tumor Necrosis Factor-α Based on Poly(guanine)-Functionalized Silica Nanoparticle Label. Anal. Chem., 78, 6974-6979.

6Li T., Guo L. P., and Wang Z. X. (2008) Highly sensitive immunoassay based on raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Biosens. Bioelectron., 23, 1125-1130.

7Jie G. F., Zhang J. J., Wang D. C., Cheng C., Chen H. Y., and Zhu J. (2008) Electrochemiluminescence immunosensor based on CdSe Nanocomposites. J. Anal. Chem., 80, 4033-4039.

8Soman C. P., and Giorgio T. D. (2008) Quantum dot self-assembly for protein detection with sub-picomolar sensitivity. Langmuir, 24, 4399-4404.

9Wan L. S., Ke B. B., and Xu Z. K. (2008) Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enzyme Microb. Tech., 42, 332-339.

10Padalkar V., Patil V., and Sekar N. (2011) Synthesis and characterization of novel 2,2'-bipyrimidine fluorescent derivative for protein binding. Chem. Cent. J., 2011, 5:72 doi:10.1186/1752-153X-5-72 (Article in press).

11Fuller R., Moroz L., Gillette R., and Sweedler J. (1998) Single-cell analyses of nitrergic neurons in simple nervous systems. Neuron, 20, 173-181.

12Okerberg E. (2001) Shear Neuropeptide analysis using capillary electrophoresis with multiphoton-excited intrinsic fluorescence detection. J. Anal. Biochem., 292, 311-313.

13Birch D. (2001) Multiphoton excited fluorescence spectroscopy of biomolecular systems. Spectrochim. Acta A, 57, 2313-2336.

14Sun W., Gee K., and Haugland R. (1998) Synthesis of novel fluorinated coumarins: Excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett., 8, 3107-3110.

15Zhang X., Neamati N., Lee Y., Orr A., Brown R., Whitaker N., and Pommier Y. (2001) Arylisothiocyanate-containing esters of caffeic acid designed as affinity ligandsfor HIV-1 integrase. J. Bioorg. Med. Chem., 2, 1649-1657.

16DiCesare N., and Lakowicz J. (2001) Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing. Anal. Biochem., 294, 154-160.

17Sartor G., Pagani R., Ferrari E., Sorbi R., Cavaggioni A., Cavatorta P., and Spisni A. (2001) Determining the binding capability of the mouse major urinary proteins using 2-naphthol as a fluorescent probe. Anal. Biochem., 292, 69-75.

18Kessler M., and Wolfbeis O. (1992) Laser-induced fluorimetric determination of albumin using longwave absorbing molecular probes. Anal. Biochem., 200, 254-259.

19Haughland R. P. (1996) Handbook of Fluorescent Probes and Research Chemicals. 6th Ed, Molecular probes, Eugene, p 679-684.

20Cowley D. J., Kane E., Richard S., and Todd J. (1991) Triazinylaniline derivatives as fluorescence probes. Part 1. Absorption and fluorescence in organic solvents and in aqueous media in relation to twisted intramolecular charge-transfer state formation, hydrogen bonding, and protic equilibria. J. Chem. Soc. Perkin Trans. 2, 1495-1500.

21Sekar N., Raut R., and Umape P. (2010) Near Infrared absorbing iron-complexed colorants for photovoltaic applications. Mat. Sci. Eng. B-Solid, 168, 259-262.

22Padalkar V., Patil V., Phatangare K., Gupta V., Umape P., and Sekar N. (2010) Synthesis of nanodispersible 6-aryl-2,4-diamino-1,3,5-triazine and its derivatives. Mat. Sci. Eng. B-Solid, 170, 77-87.

23Gupta V., Padalkar V., Patil V., Phatangare K., Umape P., and Sekar N. (2011) The synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole. Dyes Pigments, 88, 378-384.

24Padalkar V., Patil V., Gupta V., Phatangare K., and Sekar N. (2011) Synthesis and biological evaluation of novel 6-aryl-2,4-disubstituted schiff's base 1,3,5-triazine derivatives as antimicrobial agents. Res J. Pharm. Biol. Chem. Sci. 2, 908-917.

25Padalkar V., Patil V., and Sekar N. (2011) Synthesis and photo-physical properties of fluorescent 1,3,5-triazine styryl derivatives. Chem. Cent. J., 5:77, doi:10.1186/1752-153X-5-77 (Article in press).

26Padalkar V., Patil V., Gupta V., Phatangare K., and Sekar N. (2011) Synthesis of New ESIPT- Fluorescein: Photophysics of pH Sensitivity and Fluorescence. J. Phys. Chem. A, Accepted Manuscript (DOI: 10.1021/jp2073123).

27 Padalkar V., Tathe A., Phatangare, K., Gupta V., and Sekar N. (2011) Synthesis and Photo-Physical Characteristics of ESIPT Inspired 2-Substituted Benzimidazole, Benzoxazole and Benzothiazole Fluorescent Derivatives. J. Fluoresc. Accepted (Article in press, DOI: 10.1007/s10895-011-0962-8).

28Williams A. T. R., Winfield S. A., and Miller J. N. (1983) Relative fluorescence quantum yields sing a computer controlled luminescence spectrometer. Analyst, 108, 1067-1071.

29Sekar N. (1987), Synthesis of Heterocyclic Colorants, Ph. D Thesis, Mumbai University, India.