Contents lists available at GrowingScience

Current Chemistry Letters

homepage: www.GrowingScience.com

Facile multi-components one-pot synthesis of dipyrazolo[1,5-a:3',4'-d]pyrimidine as potent bioactive scaffolds

Ravindra M. Gol^a and Vijaykumar M. Barot^{a*}

^a P. G. Center in Chemistry, Smt. S. M.	Panchal Science College Talod, Gujarat, India
CHRONICLE	ABSTRACT
Article history: Received June 20, 2018 Received in revised form August 27, 2018 Accepted October 30, 2018 Available online October 30, 2018	An efficient, three-component, catalyst free synthesis of dipyrazolo[1,5- <i>a</i> :3',4'- <i>d</i>]pyramid scaffolds has been carried out using 3-methyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one (1), 5-amino pyarazole (2a-b) and substituted aromatic aldehydes. The reaction underwent cyclocondensation reaction in reflux condition with moderate to good (62%–90 %) yields. The twenty newly prepared molecules were analyzed by means of ¹ H & ¹³ C NMR, Mass, and IR spectroscopies and their activities against the bacterial and fungal strains were screened. Some of tested compounds
Keywords: Dipyrazolo[1,5-a:3',4'- d]pyrimidine Multi-component reaction Catalyst free Antibacterial Antifungal	antifungal activity.
	© 2018 by the authors; licensee Growing Science, Canada,

1. Introduction

Pyrimidine scaffold is found in several naturally occurring compounds and they make the core structures of many biologically active scaffolds and much more pharmaceutical industrial materials.^{1,2} For the most part, significant fused dipyrazoloes is diprazolopyrimidine derivative which acquires a range of biological potent molecules.³ The MCRs (Multi-components reaction) approach is more convenient in comparison to conventional synthesis because of flexibility and atom-efficient character.⁴ We used the MCRs for an optimization of a synthesis of dipyrazolo[1,5-a:3',4'-d]pyrimidines. Pyrazolopyrimidines have shown different types of pharmacological activities such as antitumor,^{5, 6} anticancer,⁷ DPP-4 inhibitory activity,^{8, 9} PDE-4 inhibitory,^{10, 11} antiproliferative,¹² COX-2-inhibitory,¹³ 11β-HSD1 inhibitory,¹⁴ antibacterial^{15, 16} and many others.¹⁷ Thus, the synthesis of these moieties has been widely accounted in the most recent couple of years.^{2, 13, 18-20} Despite the potential utility of previously mentioned synthetic methods, many of them suffer from usage of organic solvent and catalysts as well as strong acidic/basic conditions, long reaction times, and low yields of the target products.²

* Corresponding author.

E-mail address: vijaykumarmbarot@gmail.com (V. M. Barot) © 2018 by the authors; licensee Growing Science, Canada

doi: 10.5267/j.ccl.2018.010.001

Herein, we report an efficient catalyst free synthesis of these important biologically active pyrazolopyrimidines based on cyclocondensation reaction of 3-methyl-1*H*-pyrazol-5(4*H*)-one (1), 3-phenyl-1*H*-pyrazol-5-amine (2a), 3-(4-chlorophenyl)-1*H*-pyrazol-5-amine (2b) and substituted aromatic aldehydes (3a-j) run in a reflux condition.

2. Results and Discussion

2.1 Chemistry

Our preliminary study involving the synthesis of 3-methyl-1*H*-pyrazol-5(4*H*)-one (1), 3-phenyl-1*H*-pyrazol-5-amine (**2a**) and 3-(4-chlorophenyl)-1*H*-pyrazol-5-amine (**2b**) were based on earlier reported procedures.^{11,21,22} The catalyst free, one-pot, high yielding condensation reaction of 3-methyl-1*H*-pyrazol-5(4*H*)-one (1), 3-(4-substitutedphenyl)-1*H*-pyrazol-5-amines (**2a-b**) and aromatic aldehydes (**3a-j**) was carried out using methanol as a solvent at reflux temperature to furnish desired dipyrazolo[1,5-*a*:3',4'-*d*]pyrimidine (**4a-t**) (Scheme 1).

Scheme 1. Synthesis of dipyrazolo[1,5-*a*:3',4'-*d*]pyrimidin

The reaction run at room temperature with constant stirring, gives a poor yield, what could be easily understanding taking in consideration a low solubility of 3-methyl-1*H*-pyrazol-5(4*H*)-one (1) in methanol at that temperature. Thus, we found that this MCRs reaction was more efficient under a reflux condition with utilization of an equimolar mixture of the starting materials in methanol, and good yields of the products were obtained after 3-5 hr. Unfortunately trace amount of Hantzsch-type dihydropyridines were also formed in the reaction.^{23, 24}

The chemical structures of newly synthesized compounds (4a-t) were proved by the spectral and microanalytical techniques. The compounds 4a-t showed IR absorption bands at 3410-3430 cm⁻¹ of cyclic secondary amine (-NH) stretching. The ¹H NMR spectra of newly prepared scaffolds 4a-t posses characteristic peaks at: 4.82 ppm (hydro pyrimidine CH); two signals for two NH groups at 2.06 ppm (pyrimidine) and 10.45 ppm (pyrazole). The ¹³C NMR spectrum possess characteristic peaks at: 159.41 and 149.14 ppm (pyrazole rings); 64.28 ppm (hydro pyrimidine CH). The mass spectra molecular ion peak of compound 4c was detected at m/z 362.21 and 364.22 (M+).

2.2 Biological Activities

The newly synthesized compounds (**4a-t**) were evaluated by Lipinski filter.²⁵ Only four compounds have a logP value >5 (**4l-4o**), remaining all compounds follow the Lipinski rules of five. The *in-vitro* antibacterial activity of the 20 new synthesized compounds was evaluated using the agar well diffusion method.²⁶⁻²⁸ The compounds were dissolving and tested at 1mg/ml concentration in dimethylsulfoxide (DMSO). The tested bacteria were: *Staphylococcus aureus* (*S.a*) and *Enterococcus facialists* (*E.f*) a gram (+Ve) and *Escherichia coli* (*E.c*) and *Salmonella typhi* (*S.t*) as a gram (-Ve) bacteria. The *in-vitro* antifungal analysis was screened against two fungi: *Candida albicans* (*C.a*) and *Aspergillus niger* (*A.n*). The agar well diffusion analysis was performed using nutrient agar medium, as described previously. ^{29, 30}

After making agar mediated petri dishes to make well 5mm sterilize cork borer was used, and the solutions of tested compounds in DMSO at concentrations of 0, 25, 50, 75 and 100 μ g/ml were poured into each well The two reference drugs clarithromycin and cefixime were used as antibacterial references and ketoconazole as an antifungal agent. The inhibition % was calculated using the Equation 1. Antibacterial and antifungal activity was determined by calculate the zone of inhibition in mm.

$$\% Inhibition = \frac{I}{M}(100), \tag{1}$$

where, I= Diameter zone of inhibition (mm) and M= Diameter of petri dish (90 mm).

Lipophilicity of the molecules delivers the good antimicrobial effect. The lipophilicity of the molecules, expressed as logP, clarifies the principal indicator for the action. The o/w partition coefficient ClogP was computed utilizing the product ACD/logP.

		Gram (+) Bacteria				Gram (-) Bacteria			
Sample		<i>S. a</i>		<i>E. f</i>		Е. с		<i>S. t</i>	
code	Z.I	%	Z.I	%	Z.I	%	Z.I	%	
	(mm)	Inhibition	(mm)	Inhibition	(mm)	Inhibition	(mm)	Inhibition	
4g	19	21.11	14	15.55	18	20.00	20	22.22	
4h	18	20.00	22	22.22	16	17.77	14	15.55	
4j	19	21.11	15	16.66	20	22.22	16	17.77	
4q	23	23.33	20	20.00	16	17.77	13	14.44	
4t	19	21.11	20	22.22	22	23.33	21	20.00	
Clarithromycin	25	27.77	23	25.55	25	27.77	23	25.55	
Cefixime	23	25.55	24	26.66	23	25.55	25	27.77	

Table 1. Antibacterial activity of dipyrazolopyrimidine derivatives

Z.I = Zone of inhibition, zone diameter of growth inhibition (mm) after 24 h.

The results of antibacterial evaluation of synthesized dipyrazolopyrimidine and comparison their activities with the activities of known reference drugs are shown in the Table 1. The only compounds **4h**, **4q**, and **4t** have shown higher antibacterial activity against gram +Ve bacteria *Staphylococcus aureus* and *Enterococcus faecalis*, while **4g** and **4j** were moderately active. The only compounds **4g**, **4j**, and **4t** have shown good antibacterial activity against gram -Ve bacteria *Escherichia coli* and *Salmonella typhi*. All other obtained compounds appears to be inactive. The active compounds have a lipophilic nature with logP value below 5.

The *in-vitro* antifungal zone of inhibition results are shown in Table 2.

Sample	Fungal strains					
code		A. n.	С. а.			
	Z.I	%	Z.I	%		
	(mm)	Inhibition	(mm)	Inhibition		
4c	25	23.33	17	18.89		
4i	27	26.67	30	24.44		
4n	23	25.56	28	23.33		
4s	26	28.89	28	31.11		
Ketoconazole	28	31.11	34	37.78		

 Table 2. Antifungal activity of dipyrazolopyrimidine derivatives.

Z.I = Zone of inhibition, zone diameter of growth inhibition (mm) after 7 days.

Among the tested compounds a significant antifungal activity (in comparison with reference ketoconazole) against fungal strains *A. niger* and *C. Albicans* exhibit the compounds **4n** and **4s.** The compounds **4c** and **4i** showed moderate only.

3. Conclusions

In conclusion, we have developed a facile, simple reaction procedure for the synthesis of biologically significant dipyrazolo[1,5-a:3',4'-d]pyramid scaffold. The procedure has such features as: one pot synthesis, catalyst free, short reaction times, simple work up, and moderate to excellent yields. Preliminary *in-vitro* antibacterial study indicates that compounds **4g**, **4h**, **4j**, **4q** and **4t** have antibacterial activities and compounds **4c**, **4i**, **4n**, and **4s** have antifungal activity, which are almost comparable with reference drugs.

Acknowledgment

We thankful to Department of chemistry and microbiology, Grow more Institute of Science, Himmatnagar, Gujarat for providing laboratory facilities and biological analysis and A. Ansari for IR and NMR spectra and Chirag for mass spectroscopic analysis.

4. Experimental

4.1. Materials and Methods

Ethyl acetoacetate, aromatic aldehyde and analytical grade solvents were purchase from commercial sources and used as received. All the reaction continuously monitored by TLC Plate (Merck silica gel PF₂₅₄ plates) with Ethyl acetate/ hexane mixtures as mobile phase and spot visualized in iodine and UV chamber. Melting point measured in open capillary tube. Microanalysis was carried out on Perkin Elmer 2400 CHNS analyzer, the FT-IR spectra were recorded from 400 to 4000 cm⁻¹ with SHIMADZU FT-IR system using KBr pellet method. NMR ¹H and ¹³C spectra were recorded on Bruker F113V (600 MHz) and referenced internally with TMS and DMSO- d_6 solvent. Mass spectrum was recorded on MS Micromass.

4.2. General procedure

Synthesis of 3-methyl-7-(substituted phenyl)-4-(substituted phenyl)-4,9-dihydro-1H-dipyrazolo[1,5a:3',4'-d]pyrimidine(4a-t).

A mixture of the 3-methyl-1*H*-pyrazol-5(4*H*)-one (1, 0.01 mol), 3- substituted phenyl-1*H*-pyrazol-5amine (**2a-b**, 0.01 mol) and substituted aromatic aldehydes (**3a-j**, 0.01 mol) in methanol (15 mL) was refluxed for 4 to 5 hr. Reaction time was measured by TLC. After completion, the reaction mixture was kept at room temperature for 12 hours and filtered to get the solid dipyrazolopyrimidine products (4a-t), which were washed with methanol and dried in air.

4.3 Physical and Spectral Data

3-methyl-4, 7-diphenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4a)

Yield: 69%; light yellow solid; IR(KBr): v 3411, 3385, 3012, 2911, 2834, 1605, 1520, 1444, 703, 692 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ 1.72 (s, 3H), 2.32 (s, b, 1H), 5.21 (s, 1H), 6.9 (s, 1H), 7.43-7.68 (m, 8H), 7.83 (d, 2H, *J* = 8.2 Hz), 12.71 (s, 1H); ¹³C NMR (150 MHz, DMSO-d₆): δ 159.8, 152.8, 150.5, 141.6, 138.3, 135.6, 128.5, 126.1, 123.3, 101.5, 97.4, 58.8, 15.8; mp: 181-183 °C; Anal. Calcd for C₂₀H₁₇N₅: C, 73.37; H, 5.23; N, 21.39; Found: C, 73.47; H, 5.20; N, 21.29; m/z 327.9 (M+1).

4-(3-chlorophenyl)-3-methyl-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4b)

Yield: 78%; light pink solid; IR(KBr): v 3423, 2980, 2874, 1601, 1545,1447, 810, 773, 690 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.71 (s, 3H), 2.31 (s, b, 1H), 5.21 (s, 1H), 6.95 (s, 1H), 7.10-7.11 (d, 1H, J = 3.2 Hz), 7.23-7.56 (m, 6H), 7.71 (d, 2H, J = 7.2 Hz), 12.52 (s, 1H); ¹³C NMR (150 MHz, DMSO-d₆): δ 163.1, 155.2, 152.7, 139.2, 134.8, 130.7, 129.4 128.1, 126.4, 118.4, 104.8, 99.7, 62.3, 15.1; mp: 216-218°C; Anal. Calcd for C₂₀H₁₆ClN₅: C, 66.39; H, 4.46; Cl, 9.80; N, 19.36; Found: C, 66.36; H, 4.53; Cl, 9.40; N, 19.71; m/z 361.4, 363.6 (M+).

4-(4-chlorophenyl)-3-methyl-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4c)

Yield: 82%; light pink solid; IR(KBr): v 3403, 2924, 2812, 2729, 1595, 1500,1447, 814, 761, 692 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ 1.67 (s, 3H), 2.08 (s, b, 1H), 5.07 (s, 1H), 7.1 (s, 1H), 7.15-7.16 (d, 2H, J = 8.2 Hz), 7.34-7.49 (m, 5H), 7.58-59 (d, 2H, J = 8.0 Hz), 12.61 (s, 1H); ¹³C NMR (150 MHz, DMSO-d₆): δ 161.3, 158.7, 150.2, 143.5, 131.2, 130.3, 128.1, 126.4, 118.4, 100.7, 59.7, 16.4; mp: 208-210 °C; Anal. Calcd for C₂₀H₁₆ClN₅: C, 66.39; H, 4.46; Cl, 9.80; N, 19.36; Found: C, 66.53; H, 4.50; Cl, 9.29; N, 19.68; m/z 362.2(M+1), 364.2 (M+2).

4-(3-bromophenyl)-3-methyl-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4d)

Yield: 78%; yellow solid; IR(KBr): v 3360, 3117, 2878, 1592, 1507,1470, 1432, 883, 765, 668 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.89 (s, 3H), 2.9 (s, b, 1H), 5.12 (s, 1H), 6.79 (s, 1H), 7.04-7.11 (m, 2H), 7.21-7.42 (m, 5H), 7.76 (d, 2H, J = 8.2 Hz), 12.65 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 160.2, 156.7, 151.9, 140.4, 133.7, 130.1, 129.8 128.1, 122.6, 104.6, 89.9, 65.1, 15.9; mp: 190-192°C; Anal. Calcd for C₂₀H₁₆BrN₅: C, 59.13; H, 3.97; Br, 19.67; N, 17.24; Found: C, 59.51; H, 4.03; Br, 19.47; N, 17.01; m/z 405.5, 407.8 (M+).

3-methyl-7-phenyl-4-(p-tolyl)-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4e)

Yield: 72%; yellow solid; IR(KBr): v 3403, 3380, 3005, 2970, 2812, 1621, 1580, 1425, 1458, 853, 771, 680 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.81 (s, 3H), 2.18 (s, 3H), 2.7(s, b, 1H), 5.12 (s, 1H), 6.89 (s, 1H), 7.35-7.49 (m, 4H), 7.54-7.68 (m, 5H), 12.73 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 158.8, 156.5, 149.9, 140.1, 138.8, 132.6, 129.4, 128.9, 126.4, 105.4, 98.6, 55.9, 23.3, 15.6; mp: 175-177°C; Anal. Calcd for C₂₁H₁₉N₅: C, 73.88; H, 5.61; N, 20.51; Found: C, 73.79; H, 5.66; N, 20.58; m/z 341.3 (M+).

3-methyl-4-(4-nitrophenyl)-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4f)

Yield: 78%; Dark yellow solid; IR(KBr): v 3389, 3330, 3093, 2875, 2812, 1597, 1509, 1454, 1344, 1176, 878, 770, 697 cm⁻¹; ¹H NMR (600 MHz, $_{DMSO-d6}$): δ 1.68 (s, 3H), 2.1 (s, b, 1H), 5.09 (s, 1H), 6.91 (s, 1H), 7.38-7.51 (m, 5H), 7.63-7.72 (m, 4H), 12.72 (s, 1H); ¹³C NMR (150 MHz, $_{DMSO-d6}$): δ 162.4, 155.3, 150.6, 147.4, 140.4, 139.3 135.7, 131.1, 130.5, 129.8 127.8, 126.3, 106.2, 92.9, 59.7, 15.2; mp: 238-240 °C; Anal. Calcd for C₂₀H₁₆N₆O₂: C, 64.51; H, 4.33; N, 22.57; Found: C, 64.60; H, 4.35; N, 22.52; m/z 371.9 (M+).

2,6-dimethoxy-4-(3-methyl-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidin-4-yl)phenol (4g)

Yield: 65%; light orange solid; IR(KBr): υ 3497, 3404, 3045, 2898, 1601, 1539, 1512, 1457, 1423, 1214, 916, 770, 697 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.83 (s, 3H), 2.42 (s, b, 1H), 3.78 (s, 6H), 5.41 (s, 1H), 5.65 (s, 1H), 6.48 (s, 2H), 6.98 (s, 1H), 7.14-7.37 (m, 5H), 12.64 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 160.9, 156.5, 151.2, 150.3,138.9, 134.7, 132.9, 130.1, 128.8, 125.8, 110.5, 101.5, 97.6, 66.3, 58.4, 15.9; mp: 204-207°C; Anal. Calcd for C₂₂H₂₁N₅O₃: C, 65.50; H, 5.25; N, 17.36; Found: C, 65.41; H, 5.20; N, 17.39; m/z 403.8 (M+).

4-(3-ethoxy-4-methoxyphenyl)-3-methyl-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4h)

Yield: 63%; yellow solid; IR(KBr): v 3412, 3388, 2995, 2937, 1515, 1458, 1425, 1260, 1028, 812, 765, cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.31 (t, 3H), 2.03 (s, 3H), 2.06 (s, b, 1H), 3.72 (s, 3H), 3.83-3.85 (q, 2H), 4.82 (s, 1H), 6.70-6.89 (m, 5H), 6.94-7.23 (m, 3H), 7.41 (d, 2H, *J* = 8.2 Hz), 11.45 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 159.4, 149.1, 148.0, 147.8, 147.3, 130.8, 128.9, 128.1, 113.8, 113.0, 112.1, 111.5, 103.6, 94.5, 64.2, 55.6, 18.7, 15.2; mp: 151-153°C; Anal. Calcd for C₂₂H₂₁N₅O₃: C, 68.81; H, 5.77; N, 17.44; Found: C, 68.83; H, 5.75; N, 17.39; m/z 401.3 (M+).

5-chloro-2-methoxy-4-(3-methyl-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidin-4-yl) phenol(4i)

Yield: 67%; orange solid; IR(KBr): v 3545,3455, 3049, 2921, 1587, 1518, 1462, 1427, 1245, 998, 881, 779 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.71 (s, 3H), 2.14 (s, b, 1H), 3.92 (s, 3H), 5.08 (s, 1H), 5.48 (s, 1H), 6.80 (d, *J* = 7.6 Hz 2H), 6.91 (s, 1H), 7.53-7.68 (m, 5H), 12.67 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 158.4, 155.7, 149.9, 148.5, 146.3, 138.1, 135.5, 130.1, 128.4, 127.3, 120.5, 102.9, 93.9, 61.9, 57.3, 14.2; mp: 180-182°C; Anal. Calcd for C₂₁H₁₈ClN₅O₂: C, 61.84; H, 4.45; Cl, 8.69; N, 17.17; Found: C, 61.79; H, 4.48; N, 17.19; m/z 406.9 (M+).

2-chloro-5-(3-methyl-7-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidin-4-yl)phenol (4j)

Yield: 71%; pale yellow solid; IR(KBr): v 3505, 3398, 3013, 2879, 1541, 1514, 1458, 1423, 1093, 882, 830, 639 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.68 (s, 3H), 2.52 (s, b, 1H), 5.42 (s, 1H), 6.61-6.69 (m, 2H), 6.92-7.2 (m, 4H), 7.93-7.95 (d, 2H, *J* = 8.8 Hz), 8.82 (s, b, 1H), 12.72 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 159.2, 157.2, 154.6, 149.2, 138.7, 134.5, 132.7,130.5, 129.9, 127.1, 122.5,118.6,103.8, 94.3, 62.8,14.7; mp: 186-188°C; Anal. Calcd for C₂₀H₁₆ClN₅O: C, 63.58; H, 4.27; Cl, 9.38; N, 18.54; Found: C, 63.59; H, 4.38; N, 17.10; m/z 377.2, 379.8 (M+).

7-(4-chlorophenyl)-3-methyl-4-phenyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4k)

Yield: 73%; yellow solid; IR(KBr): v 3403, 3010, 2920, 2832, 1595, 1520, 1457, 825, 790, 767 cm⁻¹;

¹H NMR (600 MHz, _{DMSO-d6}): δ 1.80 (s, 3H), 2.81 (s, b, 1H), 5.11 (s, 1H), 6.72 (s, 1H), 7.13-7.23 (m, 5H), 7.45-7.46 (d, 2H, J = 8.2 Hz) 8.02-8.03(d, 2H, J = 8.0 Hz), 12.31(s, b, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 160.1, 155.7, 152.6, 140.2, 137.2, 130.9, 129.1,126.2, 105.5, 94.9, 59.2, 15.7; mp: 175-178°C; Anal. Calcd for C₂₀H₁₆ClN₅: C, 66.39; H, 4.46; Cl, 9.80; N, 19.36; Found: C, 66.42; H, 4.49; N, 19.33; Cl, 9.76: m/z 361.25, 363.12 (M+).

4-(3-chlorophenyl)-7-(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4l)

Yield: 81%; light yellow solid; IR(KBr): v 3391, 3012, 2980, 2832, 1592, 1537, 1463, 832, 803, 753 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.83 (s, 3H), 3.01 (s, b, 1H), 5.34 (s, 1H), 6.86 (s, 1H), 7.10-7.11 (d, 1H, *J* = 4.6 Hz), 7.26-7.29 (m, 3H) 7.48-7.49 (d, 2H, *J* = 8.0 Hz) 8.01-8.02(d, 2H, *J* = 7.8 Hz) 11.9(s, b, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 159.3, 154.6, 150.1, 141.5, 135.9, 134.3, 132.3, 131.3, 129.7,128.2, 125.9, 124.5, 104.8, 93.6, 61.7, 15.2; mp: 207-209°C; Anal. Calcd for C₂₀H₁₅Cl₂N₅: C, 60.62; H, 3.82; Cl, 17.89; N, 17.67; Found: C, 60.58; H, 3.83; N, 17.71; Cl, 17.67; m/z 395.21, 397.45 (M+).

4,7-bis(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4m)

Yield: 90%; light yellow solid; IR(KBr): v 3394, 3010, 2986, 2825, 1590, 1535, 1461, 828, 803, 764 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.88 (s, 3H), 2.98 (s, b, 1H), 5.51 (s, 1H), 6.67 (s, 1H), 7.17-7.18 (d, 2H, *J* = 7.6 Hz), 7.28 (d, 2H, *J* = 7.8 Hz) 7.58 (d, 2H, *J* = 7.8 Hz) 8.12 (d, 2H, *J* = 8.0 Hz), 12.1(s, b, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 159.7, 153.4, 150.5, 140.6, 135.1, 132.6, 129.3, 128.8, 104.6, 93.2, 61.3, 15.6; mp: 171-174°C; Anal. Calcd for C₂₀H₁₅Cl₂N₅: C, 60.62; H, 3.82; Cl, 17.89; N, 17.67; Found: C, 60.65; H, 3.79; N, 17.72; Cl, 17.84; m/z 395.26, 397.40 (M+).

4-(3-bromophenyl)-7-(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4n)

Yield: 86%; dark yellow solid; IR(KBr): v 3413, 3060, 2926, 2875, 1595, 1545, 1464, 810, 684 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.81 (s, 3H), 2.67 (s, b, 1H), 5.71 (s, 1H), 6.61 (s, 1H), 7.12-7.13(m, 2H), 7.29-7.31 (m, 2H) 7.51-7.52 (d, 2H, *J* = 7.6 Hz) 8.09-810 (d, 2H, *J* = 7.8 Hz), 12.3(s, b, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 159.1, 153.4, 150.1, 139.6, 135.3, 134.6, 132.3, 129.6, 128.2, 124.5, 104.8, 93.9, 60.3, 15.2; mp: 210-212°C; Anal. Calcd for C₂₀H₁₅ClBrN₅: C, 54.50; H, 3.43; Br, 18.13; Cl, 8.04; N, 15.89; Found: C, 54.52; H, 3.41; N, 15.89; Cl, 8.08; Br, 18.10; m/z 439.12, 341.42 (M+).

7-(4-chlorophenyl)-3-methyl-4-(p-tolyl)-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine (40)

Yield: 72%; off white solid; IR(KBr): v 3408, 3020, 2933, 2812, 1594, 1515, 1469, 844, 760 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.91 (s, 3H), 2.34 (1H, s), 3.23 (s, b, 1H), 5.72 (s, 1H), 6.75 (s, 1H), 7.11 (s, 4H), 7.45 (d, 2H, *J* = 7.8 Hz) 7.81 (d, 2H, *J* = 7.8 Hz), 12.72 (s, b, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 160.2, 154.3, 151.5, 139.9, 136.9, 135.4, 132.3, 129.8, 128.4, 127.8, 104.9, 93.8, 60.7, 24.7, 15.6; mp: 164-166°C; Anal. Calcd for C₂₁H₁₈ClN₅: C, 67.11; H, 4.83; Cl, 9.43; N, 18.63; Found: C, 67.12; H, 4.82; N, 18.63; Cl, 9.43; m/z 375.76, 377.40 (M+).

7-(4-chlorophenyl)-3-methyl-4-(4-nitrophenyl)-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d] pyrimidine(4p)

Yield: 82%; dark yellow solid; IR(KBr): v 3408, 3025, 2981, 2856, 1590, 1510, 1535, 1461, 1339, 844, 795 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.79 (s, 3H), 3.27 (s, b, 1H), 5.82 (s, 1H), 6.93 (s, 1H), 7.52-7.54 (m, 4H), 7.88-789 (d, 2H, J = 7.8 Hz) 8.13 (d, 2H, J = 8.0 Hz), 12.61 (s, b, 1H); ¹³C NMR (150

MHz, $_{DMSO-d6}$): δ 158.7, 153.1, 149.7, 145.8, 139.6, 135.3, 132.5, 130.3, 129.7, 126.5, 103.9, 94.6, 61.8, 13.3; mp: 231-233°C; Anal. Calcd for C₂₀H₁₅ClN₆O₂: C, 59.05; H, 3.72; Cl, 8.71; N, 20.66;; Found: C, 59.09; H, 3.71; N, 20.63; Cl, 8.69; m/z 406.23, 408.48 (M+).

4-(7-(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidin-4-yl)-2,6-dimethoxyphenol(4q)

Yield: 62%; orange solid; IR(KBr): v 3484, 3392, 3025, 2913, 1595, 1542, 1521, 1452, 1423, 1224, 912, 774, 696 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.85 (s, 3H), 3.82 (s, b, 1H), 3.68 (s, 6H), 5.47 (s, 1H), 5.72 (s, 1H), 6.43 (s, 2H), 6.92 (s, 1H), 7.58-7.59 (d, 2H, *J* = 7.8 Hz), 7.89 (d, 2H, *J* = 7.8 Hz); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 159.2, 153.4, 149.6, 148.8, 138.2, 134.9, 132.1, 130.4, 129.1, 127.2, 108.3, 103.7, 95.3, 65.1, 57.2, 15.1; mp: 168-170°C; Anal. Calcd for C₂₂H₂₀ClN₅O₃: C, 60.34; H, 4.60; Cl, 8.10; N, 15.99; Found: C, 60.30; H, 4.61; N, 16.01; Cl, 8.11; m/z 437.18, 439.24(M+).

7-(4-chlorophenyl)-4-(3-ethoxy-4-methoxyphenyl)-3-methyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidine(4r)

Yield: 65%; orange solid; IR(KBr): v 3404, 3392, 3015, 2957, 1593, 1515, 1458, 1425, 1260, 1028, 842, 812, 765, cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.21 (t, 3H), 1.71 (s, 3H), 3.25 (s, b, 1H), 3.84 (s, 3H), 3.97-4.03 (q, 2H), 5.73 (s, 1H), 6.70-6.78 (m, 4H), 7.58-7.59 (d, 2H, J = 7.4 Hz), 7.87 (d, 2H, J = 7.8 Hz), 12.82 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 158.2, 152.3, 149.1, 148.8, 148.6, 147.4, 138.5, 135.4, 132.4, 129.6, 128.8, 126.7, 122.1, 115.2, 112.3 103.5, 94.2, 65.2, 57.3, 14.2,15.7; mp: 198-201°C; Anal. Calcd for C₂₃H₂₂ClN₅O₂: C, 63.37; H, 5.09; Cl, 8.13; N, 16.07; Found: C, 63.30; H, 5.11; N, 16.15; Cl, 8.13; m/z 435.34, 437.23(M+).

5-chloro-4-(7-(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidin-4-yl)-2-methoxyphenol(4s)

Yield: 70%; light orange solid; IR(KBr): v 3523, 3420, 3082, 2916, 1589, 1519, 1465, 1429, 1260, 998, 881, 842, 779 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.83 (s, 3H), 3.06 (s, b, 1H), 3.94 (s, 3H), 5.08 (s, b, 1H), 5.61 (s, 1H), 6.72 (s, 1H), 6.83 (s, 1H), 7.12 (s, 1H), 7.61-7.62 (d, 2H, *J* = 7.8 Hz), 7.83-7.85 (d, 2H, *J* = 8.4 Hz), 12.70 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 158.3, 154.6, 149.2, 148.2, 145.3, 138.3, 135.7, 132.7, 130.2, 129.1, 128.8, 127.1, 120.5, 118.3, 103.8, 93.2, 61.5, 57.1, 15.1; mp: 177-179°C; Anal. Calcd for C₂₁H₁₇Cl₂N₅O₂: C, 57.03; H, 3.87; Cl, 16.03; N, 15.83; Found: C, 57.14; H, 3.84; N, 15.81; Cl, 16.02; m/z 441.15, 443.56 (M+).

2-chloro-5-(7-(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-dipyrazolo[1,5-a:3',4'-d]pyrimidin-4-yl)phenol(4t)

Yield: 68%; light yellow solid; IR(KBr): v 3518, 3408, 3023, 2928, 1594, 1527, 1451, 1423, 1093, 881, 844, 832, 676 cm⁻¹; ¹H NMR (600 MHz, _{DMSO-d6}): δ 1.82 (s, 3H), 3.12 (s, b, 1H), 5.61 (s, 1H), 6.81 (d, 2H, *J* = 4.8 Hz), 6.84 (s, 1H), 7.24-7.25 (d, 2H, *J* = 7.2 Hz), 7.64-7.65 (d, 2H, *J* = 8.0 Hz), 7.81-7.82 (d, 2H, *J* = 7.8 Hz), 8.82 (s, b, 1H), 12.62 (s, 1H); ¹³C NMR (150 MHz, _{DMSO-d6}): δ 159.2, 157.2, 154.6, 149.2, 138.7, 134.5, 132.7, 130.5, 129.9, 127.1, 122.5, 118.6, 103.8, 94.3, 62.8, 15.7; ; mp: 169-171 °C; C₂₀H₁₅Cl₂N₅O: C, 58.27; H, 3.67; Cl, 17.20; N, 16.99; Fond: C 58.25, H 3.69, N 17.01, Cl 17.22; m/z 411.23, 413.42 (M+).

References

1. Shekarrao K., Kaishap P. P., Saddanapu V., Addlagatta A., Gogoia S., and Boruah R.C. (2014) Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines pyrazolo[3,4-b]quinolines pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. *RSC Adv.*, 4 (46) 24001–24006.

- 2. Cherukupalli S., Hampannavar G. A., Chinnam S., Chandrasekaran B., Sayyad N., Kayamba F., Aleti R. R., and Karpoormath R. (**2018**) An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold. *Bioorganic Med. Chem.*, 26 (2) 309-339.
- Ismail N. S., Ali E. M., Ibrahim D. A., Serya R. A., Abou D. A., and Ella E. (2016) Pyrazolo[3, 4 d] pyrimidine based scaffold derivatives targeting kinases as anticancer agents. *Futur. J. Pharm. Sci.*, 2 (1) 20-30.
- 4. Rahmati A., and Khalesi Z. (**2012**) Catalyst free synthesis of fused pyrido[2,3-d]pyrimidines and pyrazolo[34-b]pyridines in water. *Chinese Chem. Lett.*, 23 (10)1149-1152.
- 5. Abdel-latif E., Abdel-fattah S., Gaffer H. E., and Etman H. A. (**2016**) Synthesis and antitumor activity of some new pyrazolo[3,4-d]pyrimidine and pyrazolo[3, 4-b]pyridine derivatives. *Egypt. J. Basic Appl. Sci.*, 3 (1) 118-124.
- 6. Zhao M., Ren H., Chang J., Zhang D., Yang Y., He Y., and Qi C. H. Zhang. (2016) Design and synthesis of novel pyrazolo[15-a]pyrimidine derivatives bearing nitrogen mustard moiety and evaluation of their antitumor activity in vitro and in vivo *Eur. J. Med. Chem.*, 119 () 183-196.
- Ismail N. S. M., Ali G. M. E., Ibrahim D. A., and Elmetwali A. M. (2016) Medicinal attributes of pyrazolo[1, 5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. *Futur. J. Pharm. Sci.*, 2 (2) 60-70.
- Kumar N. R., Poornachandra Y., Swaroop D. K., Dev G. J., Kumar C. G., and Narsaiah B. (2016) Synthesis of novel ethyl 24-disubstituted 8-(trifluoromethyl) pyrido[2'3':34]pyrazolo[1,5a]pyrimidine-9-carboxylate derivatives as promising anticancer agents. *Bioorganic Med. Chem. Lett.*, 26 (21) 5203-5206.
- Deng X., Shen J., Zhu H., Xiao J., Sun R., Xie F., Lam C., Wang J., Qiao Y., Tavallaie M.S., Hu Y., Du Y., Li J., Fu L., and Jiang F. (2018) Surrogating and redirection of pyrazolo[15-a]pyrimidin-7(4H)-one core a novel class of potent and selective DPP-4 inhibitors. *Bioorganic Med. Chem.*, 26 (4) 903-912.
- Roux J. L., Leriche C., Chamiot-Clerc P., Feutrill J., Halley F., Papin D., Derimay N., Mugler C., Grépin C., and Schio L. (2016) Preparation and optimization of pyrazolo[1,5-a]pyrimidines as new potent PDE4 inhibitors. *Bioorganic Med. Chem. Lett.*, 26 (2) 454-459.
- Kim I., Song J. H., Park C. M., Jeong J. W., Kim H. R., Ha J. R., No Z., Hyun Y. L., Cho Y. S., Sook Kang N., and Jeon D. J. (2010) Design, synthesis, and evaluation of 2-aryl-7-(3',4'dialkoxyphenyl)-pyrazolo[1,5-a]pyrimidines as novel PDE-4 inhibitors. *Bioorganic Med. Chem. Lett.*, 20 (3) 922–926.
- 12. Abdou N. S., Serya R. A. T., Esmat A., Tolba M. F., Ismail N. S. M., and Abouzid K. A. M. (2015) Synthesis and in vitro antiproliferative activity of novel pyrazolo[34-d]pyrimidine derivatives. *Med. Chem. Commun.*, 6 (8) 1518-1534.
- 13. Almansa C., de Arriba A. F., Fernando L., Cavalcanti, Gomez L. A., Miralles A., Merlos M., Garcia-Rafanell J., and Forn J. (**2001**) Synthesis and SAR of a New Series of COX-2-Selective Inhibitors: Pyrazolo[15-a]pyrimidines. *J. Med. Chem.*, 44 (3) 350-361.
- Robb G. R., Boyd S., Davies C. D., Dossetter A. G., Goldberg F. W., Kemmitt P. D., Scott J. S., and Swales J. G. (2015) Design of pyrazolo-pyrimidines as 11β-HSD1 inhibitors through optimisation of molecular electrostatic potential. *Med. Chem. Commun.*, 6 (5) 926-934.
- 15. Bakavoli M., Bagherzadeh G., Vaseghifar M., Shiri A., Pordel M., Mashreghi M., Pordeli P., and Araghi M. (**2010**) Molecular iodine promoted synthesis of new pyrazolo[3,4-d]pyrimidine derivatives as potential antibacterial agents. *Eur. J. Med. Chem.*, 45 (2) 647-650.
- 16. Aggarwal R., Sumran G., Garg N., and Aggarwal A. A. (**2011**) Regioselective synthesis of some new pyrazol-1'-ylpyrazolo[1,5-a]pyrimidines in aqueous medium and their evaluation as antimicrobial agents. *Eur. J. Med. Chem.*, 46 (7) 3038-3046.
- 17. Cherukupalli S., Karpoormath R., Chandrasekaran B., Hampannavar G. A., Thapliyal N., and Palakollu V. N. (**2017**) An insight on synthetic and medicinal aspects of pyrazolo[1,5-a] pyrimidine scaffold. *Eur. J. Med. Chem.*, 126, 298-352.

- 18. Hassan A. S., Mady M. F., Awad H. M., and Hafez T. S. (**2017**) Synthesis and antitumor activity of some new pyrazolo[1,5-a]pyrimidines. *Chinese Chem. Lett.*, 28 (2) 388-393.
 - 19. Saikia P., Gogoi S., and Chandra Boruah R. (2015) Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multi-Substituted Pyrazolo[15-a]pyrimidines. J. Org. Chem., 80 (13) 6885–6889.
 - 20. Zhang J., Peng J., Wang T., Wang P., and Zhang Z. (2016) Synthesis crystal structure characterization and antifungal activity of pyrazolo[15-a]pyrimidines derivatives. *J. Mol. Struct.*, 1120 228-233.
 - 21. M Mojtahedi, M. M., Jalali, M. R., Saeed Abaee, M., and Bolourtchian, M. (2006) Microwaveassisted synthesis of substituted pyrazolones under solvent-free conditions. *Hetero. Comm.*, 12 (3-4), 225-228.
 - 22. Khidre R. E., and Abdelwahab B. F. (2013) Synthesis of 5-membered heterocycles using benzoylacetonitriles as synthon. *Turkish J. Chem.*, 37 (5) 685–711.
 - 23. Kappe C. O. (**1997**) A Reexamination of the Mechanism of the BiginelliDihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate. J. Org. Chem., 62 (21) 7201-7204.
 - Chebanov V. A., Saraev V. E., Desenko S. M., Chernenko V. N., Knyazeva I. V., Groth U., Glasnov T. N., and Kappe C. O. (2008) Tuning of Chemo and Regioselectivities in Multicomponent Condensations of 5-Aminopyrazoles Dimedone and Aldehydes. J. Org. Chem. 73 (13) 5110–5118.
 - 25. Lipinski C. A., Lombardo F., Dominy B. W., and Feeney P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Deliv. Rev.*, 46 (1-3) 3-26.
 - 26. Gol R. M., Khokhani K. M., Khatri T. T., and Bhatt J. J. (2014) Synthesis of Novel Pyrazolines of Medicinal Interest. *J. Korean Chem. Soc.*, 58 (1) 49-56.
 - 27. Clinical and Laboratory Standards Institute Performance Standards for AntimicrobialDisk Susceptibility Test Approved Standard (2006) ninth ed. CLSI Wayne PA USA.
 - 28. National Committee for Clinical Laboratory Standards Methods for DilutionAntimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard M7-A4 (2000) fourth ed. NCCLS Wayne PA USA.
 - 29. Magaldi S., Mata-Essayag C., de Capriles H., Perez C. M. T. and Collela C. Olaizola. (2004) Well diffusion for antifungal susceptibility testing. *Int. J. Infect. Dis.* 8 (1) 39-45.
 - 30. Perez C., Pauli M., and Bazerque P., (1990) an antibiotic assay by the agar well diffusion method. *Acta Biol. Med. Ex.*, 15, 113–115.

© 2018 by the authors; licensee Growing Science, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

120