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 A convenient, highly efficient and time economic method has been described for the chemo- 
and regioselective synthesis of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-
1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-diones derivatives by one-pot two-
component reaction of 1,3-diethyl-2-thiobarbituric acid or 1,3-dimethyl-2-thiobarbituric acid 
with substituted arylglyoxalmonohydrates using commercially available zirconium (IV) 
oxydichloride octahydrate (ZrOCl2.8H2O) as green Lewis acid catalyst. This method is 
associated with some attractive characteristics such as good selectivity, very short reaction 
time, high yield of products, cleaner reaction profile, no harmful by-product, cheap and 
environmental benign catalyst, simple experimental and work-up procedure. This procedure 
does not require solvent separation and purification steps such as column chromatography. 
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1. Introduction 

      Synthesis of required products in selective and environmentally friendly way is an enduring 
challenge in chemical sciences. Thus in recent times “Green Chemistry” which give us the guidelines 
for safer and eco-friendly method of chemical synthesis has gained significant attention both from the 
academia and industries.1-6  Multi-component reactions (MCRs) especially those performed in water or 
ethanol can help chemists to conform their methodology with the requirements of “Green Chemistry” 
as well as to extend libraries of heterocyclic scaffolds.7-15 Creating of highly efficient, selective, eco-
friendly, and reusable catalysts is an interesting target of synthetic organic chemistry in academy and 
industry.16-21 

      ZrOCl2.8H2O is a highly water–tolerant compound, which its handling does not need especial 
precautions.22-23 Recently, ZrOCl2.8H2O has emerged as very effective catalyst for various organic 
reactions such as Knoevenagel condensation,24 Michael addition,25 oxidation of alcohols,26 acylation 
of alcohols, phenols, amines and thiols,27 aerobic N-methylation of substituted Anilines,28 esterification 
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of long chain carboxylic acids,29 one-pot synthesis of heterocyclic compounds,30-34 and other organic 
transformations. 

     Pyrimidine derivatives and heterocyclic annulated pyrimidines display a wide spectrum of 
interesting pharmacological properties (Fig. 1).35-42 The pyranopyrimidines showed a broad range of 
biological activities, such as antitubercular,43 antimicrobial,44 antiplatelet,45 antifungal46 and antitumor 
agents47 as well as antiviral activities.48 As a result, the development of efficient methods for the 
synthesis of these compounds is one of the most attractive fields in preparative chemistry. 
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Fig. 1. Examples of some substituted pyrimidine marketed drugs. 

2. Results and Discussion 

     Because of the wide use of efficient and green Lewis acid catalyst in different areas of organic 
chemistry47-55 and as part of our previous studies,56-62 we report herein a highly efficient and expeditious 
method for the chemo-and regioselective synthesis of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-
tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-dione derivatives, via an one-pot two-
component reaction of arylglyoxalmonohydrates (1a-j) and 1,3-dimethyl-2-thiobarbituric acid (3a) or 
1,3-diethyl-2-thiobarbituric acid (3b). The syntheses were carried out in the presence of catalytic 
amount of ZrOCl2.8H2O in ethanol at room temperature as shown on the Scheme 1. 
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Scheme 1. ZrOCl2.8H2O catalyzed synthesis of pyrano[2,3-d:6,5-dˊ]dipyrimidine derivatives 
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     Initially we have studied the reactions of phenylglyoxalmonohydrate (1a) with 1,3-dimethyl-2-
thiobarbituric acid (3a) or 1,3-diethyl-2-thiobarbituric acid (3b) run in the presence of ZrOCl2.8H2O, 
which was considered as green Lewis acid catalyst, in ethanol. Interestingly, the optimal catalyst 
loading in the synthesis of tetramethyl and tetraethyl substituted products was different. So that, in the 
synthesis of (4a) and (4j) were used 30 and 15 mol% of ZrOCl2.8H2O respectively (Table 1, entry 6 
and 13). When the reaction were carried out in water, target product was not formed even after 6 hours, 
in all conditions tested (room temperature, 50 ºC and reflux) (Table 1, entry 7, 8, 9 and 16, 17, 18). 

Table 1. Optimization of the reaction conditions 
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Entry Solvent R Product ZrOCl2.8H2O, mol% Temp, ºC Time, min Yield, % 
1 CH3CH2OH CH3 (3a) 4a - r.t. 18057 83 
2 CH3CH2OH CH3 (3a) 4a 5 r.t. 60 75 
3 CH3CH2OH CH3 (3a) 4a 10 r.t. 5 77 
4 CH3CH2OH CH3 (3a) 4a 15 r.t. 3 82 
5 CH3CH2OH CH3 (3a) 4a 20 r.t. 3 85 
6 CH3CH2OH CH3 (3a) 4a 30 r.t. 3 91 
7 H2O CH3 (3a) 4a 20 r.t. 360 - 
8 H2O CH3 (3a) 4a 20 50 360 - 
9 H2O CH3 (3a) 4a 20 Reflux 360 - 

10 CH3CH2OH CH2CH3 (3b) 4j - r.t. 18057 79 
11 CH3CH2OH CH2CH3 (3b) 4j 5 r.t. 5 89 
12 CH3CH2OH CH2CH3 (3b) 4j 10 r.t. 5 89 
13 CH3CH2OH CH2CH3 (3b) 4j 15 r.t. 3 95 
14 CH3CH2OH CH2CH3 (3b) 4j 20 r.t. 3 90 
15 CH3CH2OH CH2CH3 (3b) 4j 30 r.t. 3 90 
16 H2O CH2CH3 (3b) 4j 20 r.t. 360 - 
17 H2O CH2CH3 (3b) 4j 20 50 360 - 
18 H2O CH2CH3 (3b) 4j 20 Reflux 360 - 

  

     Next, we probed the generality and scope of the reaction. We were pleased to find that the reaction 
proceeded well with a different arylglyoxalmonohydrates (1a-j) and 1,3-dimethyl-2-thiobarbituric acid 
(3a) or 1,3-diethyl-2-thiobarbituric acid (3b) under optimized reaction conditions to give a library of 
5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-
4,6(5H,7H)-dione derivatives (Table 1). The results of these reactions revealed that 
arylglyoxalmonohydrates bearing an electron-donating or electron-withdrawing group were well 
tolerated under the optimized conditions, with the corresponding pyrano[2,3-d:6,5-dˊ]dipyrimidine 
products (4a-s) being formed in excellent yields. However, the arylglyoxalmonohydrates with meta-
position substituents offered lower yields than para-position substituents. 
 
     Finally, the structure of the all compounds were confirmed by means of IR, 1H-NMR and 13C-NMR 
spectroscopies and by comparison with available data for previously reported pyrano[2,3-d:6,5-
dˊ]dipyrimidines. In the CDCl3 solution all pyrano[2,3-d:6,5-dˊ]dipyrimidine derivatives exist as 
mixture of keto and enol tautomers. In the 1H-NMR spectra, the sharp singlet at 4.91-5.65 ppm, which 
belongs to CH of pyran ring, was present. Also broad singlet at 8.21-13.18 belongs to the OH group of 
the enol tautomer.  
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     A proposed mechanism of the ZrOCl2.8H2O catalyzed one-pot reaction for the rapid synthesis of 
4a-s is depicted on the Scheme 2. Based on literature22-34,63 and own observations, we believed that the 
carbonyl groups of arylglyoxal (2a-j) is activated by ZrOCl2.8H2O to give intermediate (6) which 
facilitates a regioselective nucleophilic attack of the enol form of (3a-b) followed by a dehydration 
reaction to give (8a-s). Then, Michael addition of (7a-b) to (8a-s) catalysed by ZrOCl2.8H2O led to 
(9a-s). The cyclization of (9a-s) and dehydration of (10a-s) afforded the final products (4a-s). 
 

Table 2. Chemoselective synthesis of pyrano[2,3-d:6,5-dˊ]dipyrimidine derivatives. 
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Yield, % 

This work     Lit.57 

Melting point, °C  

Found            Lit.57 

Keto/enol ratio 
in CDCl3, % 

1 1a Me (3a) 4a 3 95 83 201 (dec) 202 (dec) 49/51 

2 1b Me (3a) 4b 2 96 87 238 (dec) 237 (dec) 58/42 

3 1c Me (3a) 4c 2 96 86 225 (dec) 227 (dec) 35/65 

4 1d Me (3a) 4d 2 95 84 211 (dec) 210 (dec) 47/53 

5 1e Me (3a) 4e 2 99 92 228 (dec) 228 (dec) 100/0 

6 1f Me (3a) 4f 3 96 87 200 (dec) 201 (dec) 50/50 

7 1g Me (3a) 4g 5 90 79 154 (dec) 152 (dec) 51/49 

8 1h Me (3a) 4h 5 94 80 188 (dec) 187 (dec) 52/48 

9 1i Me (3a) 4i 4 95 82 210 (dec) 207 (dec) 44/56 

10 1a Et (3b) 4j 2 91 79 199 (dec) 197 (dec) 52/48 

11 1b Et (3b) 4k 3 96 81 197 (dec) 193 (dec) 56/44 

12 1c Et (3b) 4l 2 97 85 201 (dec) 202 (dec) 40/60 

13 1d Et (3b) 4m 2 96 80 205 (dec) 204 (dec) 45/55 

14 1e Et (3b) 4n 2 98 88 222 (dec) 223 (dec) 51/49 

15 1f Et (3b) 4o 2 96 82 203 (dec) 202 (dec) 46/54 

16 1g Et (3b) 4p 3 92 75 180 (dec) 179 (dec) 52/48 

17 1h Et (3b) 4q 4 93 77 177 (dec) 179 (dec) 51/49 

18 1i Et (3b) 4r 4 97 84 203 (dec) 201 (dec) 33/69 

19 1j Et (3b) 4s 2 97 83 165 (dec) 161 (dec) 56/44 
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Scheme 2. Proposed mechanism for the synthesis of symmetric pyranodipyrimidine derivatives 
catalyzed by ZrOCl2.8H2O 

3. Experimental 

3.1. General 

     Melting points were measured on an Electrothermal 9200 apparatus after the recrystallization of the 
products from methanol. IR spectra were recorded on a Nexus-670 FT-IR spectrometer in KBr. 1H and 
13C NMR spectra were recorded on a Bruker DRX-300 Avance spectrometer at 300 and 75.5 MHz, 
respectively. 

3.2. General procedure for the preparation of 5-aryloyl-1,3,7,9-tetramethyl-2,8-dithioxo-2,3,8,9-
tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-diones derivatives 

     A mixture of arylglyoxalmonohydrates (1 mmol) and 1,3-dimethyl-2-thiobarbituric acid (1 mmol) 
in the presence of ZrOCl2.8H2O (30 mol%) in ethanol (5 mL) was stirred for 2-5 minutes at room 
temperature. Then, the resulting precipitate was filtered and washed with water (3×5 mL) and ethanol 
(2×5 mL). The crude products were purified by recrystallization from methanol. Selected spectral data 
is listed below. 

5-Benzoyl-1,3,7,9-tetramethyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-
4,6(5H,7H)-dione (4a) Cream powder,1HNMR (300 MHz, CDCl3) δ: 3.84–3.58 (m, 12H, 4×CH3), 5.69 
(s, 1H, CH in keto tautomer), 7.40 (t, J = 7.5 Hz, 2H, Ar), 7.53 (t, J = 7.5 Hz, 1H, Ar), 7.73 (d, J = 7.5 
Hz, 2H, Ar), 8.55 (br s, 1H, OH in enol tautomer) ppm. 13CNMR (75.5 MHz, CDCl3) δ: 35.3, 36.6, 
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41.5, 95.9, 127.8, 128.5, 133.0, 135.7, 162.8, 163.2, 175.4, 194.2 ppm. FT-IR (KBr) vmax: 2952, 2869, 
2484, 1702, 1621, 1467, 1394, 1339, 1295, 1339, 1110, 789 cm-1. 

2.3. General procedure for the preparation of 5-aryloyl-1,3,7,9-tetraethyl-2,8-dithioxo-2,3,8,9-
tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H)-diones derivatives. 

      A mixture of arylglyoxalmonohydrates (1 mmol) and 1,3-dimethyl-2-thiobarbituric acid (1 mmol) 
in the presence of ZrOCl2.8H2O (15 mol%) in ethanol (5 mL) was stirred for 2-5 minutes at room 
temperature. Then, the resulting precipitates were filtered and washed with water (3×5 mL) and ethanol 
(2×5 mL). The crude products were purified by recrystallization from methanol. Selected spectral data 
is listed below. 

5-Benzoyl-1,3,7,9-tetraethyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-
4,6(5H,7H)-dione (4j) Cream powder, 1HNMR (300 MHz, CDCl3)  δ: 1.12 (t, J = 6.9, 6H, 2×CH3), 
1.36 (t, J = 6.9 Hz, 6H, 2×CH3), 4.49 (q, J = 6.9 Hz, 4H, 2×CH2), 4.62 (q, J = 6.9 Hz, 4H, 2×CH2), 
5.57 (s, 1H, CH in keto tautomer), 7.37 (t, J = 7.5 Hz, 2H, Ar), 7.49 (t, J = 7.5 Hz, 1H, Ar), 7.67 (d, J 
= 7.5 Hz, 2H, Ar), 10.06 (br s, 1H, OH in enol tautomer) ppm. 13CNMR (75.5 MHz, CDCl3) δ: 11.6, 
12.0, 41.5, 44.5, 44.9, 95.9, 127.6, 128.2, 132.7, 136.0, 162.3, 162.9, 174.5, 194.4 ppm. IR (KBr) vmax: 
2981, 2935, 2520, 1694, 1622, 1444, 1384, 1269, 1110, 785 cm-1.  

4. Conclusions  

     In summary, we demonstrated a green, highly efficient and time-economic method for the synthesis 
of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-
4,6(5H,7H)-dione derivatives. This reaction was achieved by using readily available 
arylglyoxalmonohydrates and 1,3-dialkyl-2-thiobarbituric acid in the presence of catalytic amounts of 
ZrOCl2.8H2O as green Lewis acid through one-pot two-component strategy in ethanol at ambient 
temperature. 
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