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 Chemically attachment of Schiff base complexes on multiwalled carbon nanotubes (MWCNTs) 
surfaces through a convenient and simple method was studied. In the first step of this method, 
we present a new method for preparation of aminated MWCNTs in order to attachment of 
(new) chlorinated salen Schiff bases. Amination of multiwalled carbon nanotubes performed 
under microwave (MW) irradiation through a one pot two step reaction. The chemically 
attachment of salen Schiff bases on functionalized MWCNTs (salen@MWCNTs) performed 
under a facile simple nucleophilic substitution reaction and complexation of attached salen 
Schiff bases (salen complex@MWCNTs) in last step, have been occurred with reaction of 
transition metal salts and salen@MWCNTs. The obtained products were characterized in detail, 
using FTIR, XRD, UV-Vis absorption, SEM and EDX methods. 

© 2014 Growing Science Ltd.  All rights reserved.
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1. Introduction     

         Until the 1980s, the carbon universe was built on the well-known modifications, graphite and 
diamond. This perspective totally changed with the discovery of the carbon allotropes such as 
fullerenes, carbon nanotubes1 (CNTs), carbon nanohorns, and carbon onions. Because of so many 
outstanding performances, CNTs exhibit great promise for potential applications in many 
technological fields such as hydrogen storage2-4 , catalyst supports5,6, chemical sensors7,8 and 
nanoelectronic devices9. One of the most powerful approaches to improve CNT handling is the 
covalent functionalization of their side walls and tips10-13. A wide variety of reactions has been 
described for functionalization of CNTs. Because amine groups are versatile and undergo a variety of 
reactions, particular interest in functionalization processes is the attachment of amino groups (-NHR 
or NH2 groups) on CNT surfaces. In fact, the aminated MWCNTs have some advantageous for 
several applications, such as the attachment of nanoparticles to single and multiwalled carbon 
nanotubes14-16, the attachment of DNA to SWCNTs17,18 and carbon nanofibers19,20 and also 
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immobilization of Schiff base complexes21 on CNT surfaces. The Schiff bases and their metallic 
complexes have catalytic properties and can be used as homogen and heterogeneous catalysts in wide 
variety of chemical reactions22-26. The homogeneous catalysts, have some drawbacks such as 
difficulties in the catalyst recovery and product separation in contrast to heterogeneous catalysts, that 
have many advantages such as easy separation and facile recovery of the solid catalyst from the 
reaction mixture. In recent years, the interest of many researchers has been focused on heterogenizing 
of homogeneous catalysts, and there are a number of successful demonstrations of immobilized 
homogeneous complexes on supports. Heterogenization of homogeneous catalysts with similar 
activities affords an appealing methodology to expand the industrial application of homogeneous 
catalysts; for this purpose, immobilization of metal Schiff base complexes on organic or inorganic 
supports had been widely reported27-29. Immobilization via covalent bond on the support is more 
advantageous and improving the long-term stability of the solid catalyst. 
 
    Here we report a simple convenient method for chemically attachment of salen Schiff bases and 
Schiff base complexes to MWCNTs surfaces. In the first step of this method, we try to aminated of 
MWCNTs through a new one pot reaction and in second step, attachment of synthetic chlorinated 
Schiff bases (on CNT surfaces) performed under a nucleophilic substitution reaction. Complexation 
of attached salen Schiff base on MWCNTs (Salen complex@MWCNTs) has been occurred through 
the reaction of transition metal salts and salen@MWCNTs. 
 
2. Results and discussion 
 
    The present method is containing to several steps: 1. amination of MWCNTs, 2. synthesis of 
chlorinated Schiff bases, 3. chemically attachment of Schiff bases to functionalized MWCNTs and 4. 
complexation of attached Schiff bases on MWCNTs. 
The products of every step have been characterized with FTIR, UV-Vis absorption, XRD, SEM and 
EDX methods. In continue, we discuss about the obtained results. 
 
3. Conclusion 
 
     Here we present a new method for chemically attachment of salen complexes to MWCNTS 
surfaces through a clean, convenient and fast method. Functionalization of MWCNTs with amino 
groups in first step, provide a useful material for attachment of chlromethylated salen Schiff bases via 
a nucleophilic substitution reaction. Analysis results show that CNTs were functionalized in a high 
concentration. After the immobilizing the Schiff bases to CNT surfaces, reaction of them with Cu and 
Ni salts, leads to Salen complex@MWCNTs. 
 
     Our method in functionalization of CNT surfaces has some advantages in compare with other 
reported results 6, 21, because of; here we don't use acids and hazardous reagents in procedure of the 
attachment of Schiff bases on CNT surfaces. Also aminated CNTs were prepared in fast and clean 
conditions. In fact, this new procedure provides functionalized CNTs (salen@MWCNTs and Salen 
complex@MWCNTs) with high concentration of functional groups. The final reaction products can 
be used as heterogeneous catalysts in chemical reactions. The process has proved to be very effective, 
safe and easy to operate and also the scale up of this method is easy.  
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4. Experimental 

4.1. Materials  

      Multiwalled carbon nanotubes were obtained from Shenzhen Nanotechnology Co., Ltd. (China) 
The Purity of the CNTs was about 90-95%, with their diameters and lengths ranging between 20-40 
nm and 5-15 μm, respectively. The other reagents and solvents were purchased from Merck 
Company. 
 
4.2. Apparatus 
 
      FT-IR spectra were recorded on a Bruker ISS-88 spectrophotometer in KBr pellets. 1H NMR (400 
MHz) spectra were measured in CDCl3 solvent and referenced to the solvent signals by Bruker 
Avance DPX instrument. The spectra in the UV–Vis range were taken using Cary 100 varian el 
12092335 UV–Vis scanning spectrometer. ASTRA 3D Bath sonicator was applied for debundeling of 
MWCNTs also XRD instrument model Philips Analytical PC-APD was used for characterization of 
the reaction products. Cambridge 360 scanning electron microscope (SEM) with energy dispersive X-
ray spectroscopy (EDX) analysis was used for surface image measurements and chemical 
characterization of Cu and Ni salencomplex@MWCNTs. 
 

4.3. General procedure for amination of MWCNTs 
 

      180 mg of AlCl3 mixed with 10 mg MWCNTs and grind for 5 minutes and then added to 50 ml 
CH2Cl2. The mixture was sonicated for 10 minutes in bath sonicator. After that, the homogen mixture 
was irradiated in a microwave oven for 10 minutes with power of 900 watt. After this time, 200 mg of 
ammonium benzoate (as ammonia source) was added to the mixture and the reaction continues for 10 
minutes under microwave irradiation with power of 900 watt. After this time, the mixture cool to 
room temperature and filtered. Then 50 ml warm ethanol were added and sonicated for 10 min to 
remove remained unreacted compounds, and then the mixture was filtered and the resulting products 
were dried at 80C for 10 hours (Scheme 1). 
 

4.4. Chloromethylation of Salicylaldehyde 
 

      17.5 g (160 mmol) salicylaldehyde, 24 ml formaldehyde, 1.2 g ZnCl2 and 100 ml of concentrate 
HCl were poured in a 250 ml flask and stirred for 24 hours at room temperature (under N2 
atmosphere). After this time, a white solid was formed .To isolate the product, [5-chloro-methyl-2-
hydroxy-Benzaldehyde (1)], the solids dissolved in diethyl ether, and the organic phase was washed 
by saturated sodium bicarbonate. For removal of water from organic phase, a small amount of 
magnesium sulfate was added and crystallization was performed in petroleum ether 30 (Scheme 2). 
 

4.5. General procedure for synthesis of Schiff Bases 
 

     3.41 g (20 mmol) of 5-chloro-methyl-2-hydroxy-Benzaldehyde (1) was dissolved in a minimum of 
dichloromethane. Then, according to the stoichiometry of 1 to 2 of diamine to 1, the amounts of 
diamines was mesured and dissolved in minimum volume of dichloromethane and were added to 1. 
The mixture was stirred in room temperature for 1 to 3 hours (the completion of reaction monitored 
by TLC). After this time, the solution was filtered and the obtained precipitate was washed with 
dichloromethane and dried in 70oC for 6 hours (Scheme 2). 
 
4.6. General procedure for synthesis of salen @MWCNTs 
 
      50 mg of aminated MWCNTs were added to 8 ml of methanol containing 100 mg of Schiff base 
and refluxed for 24 hours at 70°C. After this time, the reaction mixture was filtered and washed with 
methanol and finally was dried at 70°C in oven (Scheme 3). 
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Scheme 3. Procedure of preparation of salen @MWCNTs 

 
     The FTIR spectra of functionalized MWCNTs are shown in Figs. 7. The IR spectra of 
functionalized MWCNTs contain several bands due to Schiff base structures. A broad band at about 
3450 cm-1 is related to the bending mode of O-H groups. Peaks at about 2800 and 2920 cm−1 are due 
to C–H stretching modes of the CH2 groups. The stretching band of the C=N groups appears at 
around 1600 cm−1. C=C and C–N vibrations appear in 1420-1550 and 1050 cm−1 respectively. These 
results indicate that salen Schiff bases attachment to the MWCNTs surfaces performed successfully. 
 

 

Fig. 7. FTIR spectra of salen 2@MWCNTs (a), Salen 3@MWCNTs (b) 
 
4.10.2. UV-Vis absorption 
 

From comparison of adsorption spectra of salen Schiff bases (Fig. 6) and salen@MWCNTs (Fig.8), it 
clearly can be recognized, that the Schiff bases were chemically attached to the surfaces of 
functionalized CNTs. 

 

Fig. 8. Uv-Vis spectra of salen 2@MWCNTs (a) and salen 3@MWCNTs (b) 
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