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 A green and efficient method for the synthesis of (4 or 5)-aryl-2-aryloyl-(1H)-imidazoles  via 
self-condensation reaction of arylglyoxal hydrates in the presence of ammonium acetate using 
water as solvent under ultrasonic irradiation was reported. The reactions proceeded in high 
yields and very short reaction time. Introduced procedure is completely ecofriendly and don’t 
need any toxic organic solvent in all performing steps. In addition, we use computational 
chemistry for acquiring some information about the thermochemistry and geometrical structure 
of these imidazole derivatives. 
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1. Introduction     

     The imidazole heterocyclic ring is present in a wide range of naturally occurring molecules.1 It is a 
common scaffold in highly significant biomolecules, including biotin, the essential amino acid 
histidine, and histamine.2 The use of imidazoles and their derivatives in chemical processes, 
especially in pharmaceuticals is becoming increasingly important, because of the possibility of 
hydrogen bond formation.3 The biological importance of the imidazole ring system has made it a 
common structure in numerous synthetic compounds, such as fungicides,4 herbicides,4 plant growth 
regulators5 and therapeutic agents.6 There are many methods existed in the literature for the synthesis 
of imidazoles, such as hetero-cope rearrangement,7 four component condensation of aryl glyoxals, 
primary amines and etc.8  

      Ultrasonic irradiation is widely used in organic chemistry especially for shortening of the reaction 
times and enhancing of the product yields.9-11 In addition every year many of published papers 
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includes application of ultrasonic irradiation which indicates that ultrasonic irradiation has a main 
role in the synthesis and functionalizing of a wide range of organic compounds. 

       Many of the publications about the construction of imidazole heterocycles suffer from one or 
more problems such as long reaction times, problems according to reaction work up and 
environmental problems due to using organic solvents. Therefore, development of new routes 
including higher yields, shorter reaction time and milder conditions for these important heterocycles 
could receive considerable attention.  
 

       In this paper, we describe an efficient, environmentally benign, simple and very fast procedure 
for the synthesis of (4 or 5)-aryl-2-aryloyl-(1H)-imidazoles (a or b) by the reaction of various 
substituted phenylglyoxal hydrates  and ammonium acetate under US irradiation in aqua's media. 
(Scheme 1) 
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Scheme 1. Synthesis of (4 or 5)-aryl-2-aryloyl-(1H)-imidazole under ultrasonic irradiation 

2. Results and Discussion 

       Recently, glyoxals have made much attention in heterocyclic synthetic chemistry.12 They can be 
prepared from the corresponding acetophenones via oxidation by SeO2 in dioxane at reflux 
conditions13 (Scheme 2). 
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Scheme 2. Synthesis of arylglyoxals 

       At first, we started with the reaction of phenylglyoxal and ammonium acetate to find optimal 
reaction conditions. The solvent selection and reaction time optimization were performed (Table 1). 

Table 1. Optimization of reaction conditions 
Entry Solvent Time (min) Yield (%) 

 
1 

 
Acetonitril 

3 
4 
5 

65 
67 
70 

 
2 

 
Ethanol 

3 
4 
5 

86 
94 
93 

3 Methanol 4 83 
 

4 
 

Water 
3 
4 
5 

85 
95 
95 

5 Diethyl ether 4 62 
6 Chloroform 4 86 
7 Dichloromethane 4 79 
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      Thus, we have found that ethanol, methanol, chloroform and water could be suitable solvent for 
this reaction. Among these solvents because of  simplicity of work up and  from the ecofriendly point 
of view, we chose the water. The results of the reaction of phenylglyoxal and ammonium acetate in 
water for different reaction times presented in Table 1, entry 4 indicate that optimal time for this 
reaction promoted by ultrasonic irradiation is four minutes.  

     Then the reactions of arylglyoxals (1c-8c) with ammonium acetate run in the selected conditions 
yielded corresponding (4 or 5)-aryl-2-aryloyl-(1H)-imidazoles in high yields. The results are 
summarized in Table 2 and indicated that application of ultrasounic irradiation causes shorter 
reaction times and higher yields in comparison with classic conditions. 

Table 2. Synthesis of (4 or 5)-aryl-2-aryloyl-(1H)-imidazoles 
Entry Aryl glyoxal Imidazole Overall Yield (%)(*) 12d 

 
1 

 
1c N

N
HO        1a,1b      

95 
(69) 

 
2 

 
2c N

N
HO

Cl Cl

2a,2b 

91 
(75) 

 
3 

 
3c N

N
HO

BrBr

 3a,3b 

87 
(59) 

 
4 

 
4c 

N

N
HO

OMe
OMe

MeO

MeO

   4a,4b 

95 
(86) 

 
5 

 
5c N

N
HO

F F

   5a,5b 

86 
(55) 

 
6 

 
6c N

N
HO

OMeMeO

6a,6b 

93 
(79) 

 
7 

 
7c N

N
HO

PhPh

       7a,7b     

72 
(48) 

 
8 

 
8c 

N

N
HO

O

O

O
O

  8a,8b 

89 
(76) 

(*)Reaction carried out without sonication for up to 45 min in water. 
 

      The proposed mechanism for this transformation involves an attack of (in-situ) generated 
aldimine 9 onto another aldimine molecule with the elimination of one H2O molecule from formed 
intermediate 10 to give compound 11 (Scheme 3).12d 
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Scheme 3. Plausible mechanism for imidazole synthesis 

      According to paths A and B after a [1,5]-hydrogen shift, compounds (a) and (b) can be generated 
respectively. Isomers (a) and (b) possess very similar properties and therefore had not been separated.  

     In progress we calculate the optimized geometry and thermochemical data for some of the 
products,14,15 and summarized the results in Table 3. For the computation was used  Density 
functional theory (B3LYP) and 6-311++G(d,p) basis set incorporated in a computer program 
Gaussian 03.16 This basis set was selected for all of the calculations because it contains both diffuse 
functions and polarized basis set. Diffuse functions are important in the case of some systems 
particularly where electrons are relatively far from the nucleus including molecules with lone pairs 
such as molecules with oxygen and nitrogen atoms in the structure.17-19 

      Computed Gibbs free energy of the products gives us important information about stability of 
both isomers (a and b) and equilibrium constant between them which can be used for assigning of 1H 
NMR spectra. Peaks with lower intensity correspond to isomer, which has lower stability or higher 
Gibbs free energy. Obtained results showed that in all of the products isomer (a) has a higher 
thermodinamical stability than isomer (b), for example ∆G= - RTLnKeq= Ga - Gb (kcal) in the case of 
compound 1 is -0.43 that corresponds to the ratio of isomers 1a / 1b in a mixture (Table 3).  

Table 3. Selected computed thermochemical data. 

En
try

 

C
om

po
un

d Eelec 
(Hartree) 

Eelec+ZPE 
(Hartree) 

∆G=  
Ga - Gb 

(kcal/mol) 

Keq= 
[a]/[b] 

Isomer (a) Isomer (b) Isomer (a) Isomer (b) 

1 1 -801.880791 -801.880501 -801.638624 -801.638203 -0.434 2.08 
2 2 -1721.126822 -1721.125853 -1720.903868 -1720.902800 -0.87 4.38 
3 6 -1030.996464 -1030.996453 -1030.689849 -1030.689651 -0.337 1.77 

 

As shown in Fig. 1 all the signals in 1H NMR spectra of mixture isomers (a) and (b) are repeated, 
respectively. Thus, isomers of 4-methoxyphenyl imidazole derivative (6a and 6b) were assigned 
based on assumption that the peaks with higher intensity are related to the isomer with lower Gibbs 
free energy.    
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Fig. 1. 1H NMR spectra of 4-Methoxyphenyl-[4-(4-methoxyphenyl)-1H-imidazol-2-yl]ketone (6a) 
and 4-Methoxyphenyl-[5-(4-methoxyphenyl)-1H-imidazol-2-yl]ketone (6b) 

3. Conclusions  
 
      In conclusion, we have developed a simple, facile and environmentally benign procedure for the 
synthesis of (4 or 5)-aryl-2-aryloyl-(1H)-imidazoles using ultrasonic irradiation in water as solvent. 
Easy work up, high yields, short reaction times, mild reaction conditions, and green procedure are 
some of the advantageous of our described procedure.  

4. Experimental 

     All chemicals were purchased from Merck, Aldrich and Fluka companies. The 1H NMR and 13C 
NMR spectra were recorded on Bruker AMX (500 MHz) spectrometer using DMSO-d6 as solvent 
and Bandeline sonoplus (GM 2200) used for preparing ultrasonic irradiation. 
 
4.1. General procedure for the synthesis of (4or5)-aryl-2-aryloyl-(1H)-imidazole derivatives: 
    
     To arylglyoxal compound (1 mmol) in water (10 mL), was added ammonium acetate (3 mmol), 
the resultant mixture was irradiated with ultrasound, after 4 minutes the reaction mixture was solidified. 
The obtained solid was then filtered. The filtrate washed with water (3-10 mL), and the crude material 
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was purified by crystallization from ethanol. The products were known compounds, and their authenticity 
was established by their 

1H NMR, 13C NMR and IR spectroscopy data compared with that reported in 
literatures.12d 
 
4.2. Computational details: 
    
      First of all, we start from search of minima on the potential energy surface for both imidazole 
isomers (a and b) at the relative energy range of 10 kcal/Mol by MMFF(Merck Molecular Force 
Field) level using Spartan software.20 The most stable conformer of each molecule were optimized 
using density functional theory (DFT) calculations with a nonlocal hybrid B3LYP (Becke- Lee-Parr) 
exchange-correlation functional21,22 employing 6-311++G(d,p) basis set. Energy minimizations and 
harmonic vibrational calculations were performed on the same theoretical level. Vibration 
frequencies are calculated in all cases to confirm that all the stationary points correspond to true 
minima on the potential energy surface. Thermochemical data were extracted from the results of the 
frequency calculations on the same theoretical level and basis set for all studied molecules. Gaussian 
03 program package used for all DFT computations.16  
 
4.3. Selected spectroscopic data: 
 

Phenyl-(5-phenyl-1H-imidazol-2-yl)ketoneand (1a) Phenyl-(4-phenyl-1H-imidazol-2-yl)ketone (1b) 
(Table 2 entry1): a yellow solid, 1H NMR (500 MHz, DMSO-d6): δ 13.80 (0.25 H, s, NH), 13.63 (1 
H, s, NH), 8.60 (2 H, d, J = 7.76 Hz), 8.47 (0.5 H, d J = 7.7 Hz), 8.08 (1 H, s), 7.97 (0.5 H, d, J = 7.95 
Hz), 7.94 (2 H, d, J = 7.64 Hz), 7.79 (0.25 H, s), 7.69 (1 H, t, J = 7.1 Hz), 7.66 (0.25 H, t, J = 7.6 Hz), 
7.60 (2 H, t, J = 7.6 Hz), 7.57 (0.5 H, t, J = 8.1 Hz), 7.47 (0.5 H, t, J = 7.55 Hz), 7.42 (2 H, t, J = 7.7 
Hz), 7.37 (0.25 H, t, J = 7.1 Hz), 7.28 (1 H, t, J = 7.3 Hz). 13C NMR (125 MHz, DMSO-d6): δ 181.6, 
179.2, 146.6, 145.5, 143.7, 137.0, 136.8, 136.6, 134.5, 133.9, 133.7, 131.5, 131.4, 129.8, 129.5, 
129.1, 129.0, 128.0, 126.5, 125.7, 119.5. IR (neat, cm-1): 3270, 1621, 1454, 1280, 1164, 906, 771, 
687.  

4-Fluorophenyl-[5-(4-fluorophenyl)-1H-imidazol-2-yl]ketone (5a) and 4-Fluorophenyl-[4-(4-
fluorophenyl)-1H-imidazol-2-yl]ketone (5b) (Table 2 entry 5): a yellow solid, 1H NMR (500 MHz, 
DMSO-d6): δ 13.81 (0.2 H, s, NH), 13.64 (1H, s, NH), 8.70 (2 H, dd, J = 8.64, 5.89Hz), 8.58 (0.4 H, 
dd, J = 8.07, 5.15Hz), 8.07 (1 H, s), 8.01 (0.4 H, dd, J = 8.16, 5.01Hz), 7.95 (2 H, dd, J =, 8.31 5.74 
Hz), 7.76 (0.2 H, s), 7.43 (2 H, t, J = 8.82 Hz), 7.39 (0.4 H, t, J = 8.83 Hz), 7.31 (0.4 H, t, J = 8.74 
Hz), 7.25 (2 H, t, J = 8.8 Hz). 13C NMR (125 MHz, DMSO-d6): δ 179.9, 179.8, 166.9, 164.9, 163.3, 
161.4, 145.3, 145.2, 142.8, 134.5, 134.5, 133.3, 131.0, 131.0, 128.7, 128.7, 127.6, 127.6, 119.4, 
116.7, 116.4, 116.3, 116.2, 116.2. IR (neat, cm-1): 3282, 3129, 3096, 1623, 1595, 1514, 1450, 1245, 
1160, 906, 838, 774, 649.  

4-Methoxyphenyl-[5-(4-methoxyphenyl)-1H-imidazol-2-yl]ketone (6a) and 4-Methoxyphenyl-[4-(4-
methoxyphenyl)-1H-imidazol-2-yl]ketone (6b) (Table 2 entry 6):: a yellow solid, 1H NMR (500 MHz, 
DMSO-d6): δ 13.52 (0.37 H, s, NH), 13.40 (1 H, s, NH), 8.67 (2 H, d, J = 9 Hz), 8.54 (0.74 H, d, J = 
8.9 Hz), 7.90 (1 H, s), 7.89 (0.74 H, d, J = 8.16 Hz), 7.84 (2 H, d, J = 8.65 Hz), 7.64 (0.37 H, s), 7.13 
(2 H, d, J = 8.9 Hz), 7.09 (0.74 H, d, J = 8.85 Hz), 7.01 (0.74 H, d, J = 8.9 Hz), 6.99 (2 H, d, J = 8.75 
Hz) 3.88 (3 H, s), 3.87 (1.11 H, s), 3.80 (1.11 H, s), 3.78 (3 H, s). 13C NMR (125 MHz, DMSO-d6): δ 
179.9, 179.8, 164.1, 163.9, 161.0, 159.4, 146.4, 145.5, 143.5, 136.2, 133.9, 133.8, 129.7, 129.5, 
128.5, 128.0, 127.3, 127.0, 122.1, 117.8, 115.2, 114.9, 114.5, 114.4, 56.4, 56.3, 56.0, 55.9. IR (neat, 
cm-1): 3266, 1611, 1598, 1455, 1289, 1250, 1163, 1028, 905, 832, 774, 643.  

Benzo[d][1,3]dioxol-5-yl-[5-(benzo[d][1,3]dioxol-5-yl)-1H-imidazol-2 yl]ketone (8a) and 
Benzo[d][1,3]dioxol-5-yl-[4-(benzo[d][1,3]dioxol-5-yl)-1H-imidazol-2-yl]ketone (8b) (Table 2 entry 
8): a yellowish green solid, 1H NMR (500 MHz, DMSO-d6): δ 13.52. (0.3 H, s, NH), 13.44 (1 H, s, 
NH), 8.45 (1 H, d, J = 8.19 Hz), 8.28 (0.3 H, d, J = 8.13 Hz), 8.16 (1 H, s), 8.01 (0.3 H, s), 7.94 (1 H, 
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s), 7.68 (0.3 H, s), 7.58 (0.3 H, s), 7.48-7.44 (2.3 H, m), 7.14 (1 H, d, J = 8.24 Hz), 7.10 (0.3 H, d, J = 
8.22 Hz), 7.01-6.97 (1.3 H, m) 6.18 (2 H, s), 6.17 (0.6 H, s), 6.07 (0.6 H, s), 6.04 (2 H, s). 13C NMR 
(125 MHz, DMSO-d6): δ 182.2, 179.2, 152.4, 148.53, 148.25, 148.1, 147.2, 145.2, 143.4, 130.9, 
128.8, 128.4, 128.1, 120.6, 119.2, 118.4, 110.7, 109.6, 109.4, 108.9, 108.7, 106.9, 106.2, 102.8, 
102.1, 101.8. IR (neat, cm-1): 3444, 3285, 1622, 1500, 1460, 1245, 1099, 1039, 935, 812, 770, 457.  
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