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 Electron impact (EI) mass spectrometer apparatus has been used to monitor the relative 
intensities of ion clusters of the type Xn(H2O)n where X is 3-arylpyrimido[4,5-c]pyridazine-
5,7(6H,8H)-diones (1a-d), 3-aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones 
(2a-d) and n = 1, 2. The m/z of selected fragments obtained from 1a-d and 2a-d show a 
clustered water molecule due to strong intermolecular H-bonding between fragment and 
clustered water molecule. 
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1. Introduction     

      The importance of fused pyrimidines as; pyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones, which are 
common sources for the development of new potential therapeutic agents, is well-known 1-5. Some of 
this class of compounds plays new heterocyclizations based on SN

H-methodology as N(2)-oxide and 3-
alkylamino derivatives of 6,8-dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione 6,7. 

Hydrogen bonding plays a key rule in biology, chemistry and remains a topic of intense current 
interest as judge by an enormous continuing amount of literatures. A few selected recent articles 
exemplify the general scope of the topic, ranging from the rule of H-bonding in: weak interaction in 
the gas phase 8, supramolecular assembles 9, helical structure 10, molecular rotors 11, through to 
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measurement of H-bond acidity of organic compounds 12, diastereoselective formation of 
centrosymmetric 18-membered ring 13 and etc. 

 
Research investigations of the properties of clusters have been rapidly expanding in last two 

decades 14-27. On account of the intrinsic nature of accurate measurement of molecular masses, mass 
spectrometry has become an indispensable tool to study noncovalent interactions for protein 
complexes or oligomers 28-31. Mixed-clusters with water also have been reported with acetone 25-27, 
cyclopentanone 32, ammonia 33, trimethylamine (TMA) 34, etc. Herein, we report the formation of the 
monomeric and dimeric forms of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones (1a-d) and 3-
aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones (2a-d) containing of H2O cluster in 
structure by means of EI mass spectroscopy. 

2. Results and Discussion 

 

This paper presents results on the study of mass spectroscopy of 3-arylpyrimido[4,5-c]pyridazine-
5,7(6H,8H)-diones 1a-d and 3-aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones 2a-d. 
The general formula structures of 1a-d and 2a-d is shown at Scheme 1. All mass fragments of these 
compounds and their corresponding natural abundances (in parenthesis) are summarized in Table 1. 
In addition to 1H NMR data 35, we found that the mass spectra of these compounds show strongly 
water clustered in the structure in ratio of 1:1. We assume the monomer and dimer structures of 1a-d 
and 2a-d as Xn(H2O)n where, X = heterocyclic compounds 1a-d and 2a-d, n = 1, 2 and thus, the 
structure of monomer and dimer containing of clustered water will be show as X1(H2O)1 and 
X2(H2O)2, respectively. The mass spectra of these compounds show the both water clustered 
monomer and dimer forms (Figures 1, 2 and Scheme 2). This observation indicated that there is a 
strong H-bond between monomer–water and weak H-bond between monomer–monomer species in 
gas phase. The strong H-bond not only exists between monomer-water species in solution (in DMSO 
as a suitable solvent) but also in gas phase in ionization chamber. The proposed water clustered dimer 
forms assigned as I and II structures is shown in Scheme 2. Interestingly, the fragmentation of these 
compounds in mass ionization chamber show some significant fragments that support the existence of 
X1(H2O)1 and X2(H2O)2 (monomer-H2O and dimer-2H2O species, respectively).  

 
For instance, the proposed fragmentations of 1d and 2d are shown in Scheme 3. The peak of two 

clustered water ion molecular of dimer (X2(H2O)2) and monomer (X1(H2O)1) forms of 1d appeared at 
m/z 552 ([M++18]2) in low intensity and at m/z 276 (M++18) in 50% abundance, respectively. A peak 
at m/z 259 (M++1) appeared as base peak (100% abundance) and corresponded to D and/or E 
fragments. Surprisingly, it seems that some other fragments also show the clustered water molecule 
and is shown in Scheme 3 and Figures 1 and 2. The X1(H2O)1 (B form) was tautomerized to C then 
converted to D at m/z 259 with lose of water molecule and then captured hydrogen radical. The loss 
of hydroxyl radical from C can release the E form containing of a water clustered molecule. The 
capture of hydrogen radical by E was obtained F at m/z 260 (≈ 20%). The release of natural cyanic 
acid (HCN) from F obtained ion radical G containing of a water molecule at m/z 233 (33%). This 
form can convert to H then convert to I cation at followed by hydrogen radical loss. The instability of 
I forced to rearranged to 3-(4-fluorophenyl)oxazolo[4,5-c]pyridazine-6-ium ion (J) at m/z 232. 
Finally, the hydrogen radical capturing of J produced 3-(4-fluorophenyl)oxazolo[4,5-c]pyridazine 
(3d) at m/z 233 (33%). In parallel the fragmentation in the mentioned above, the peak at m/z 233 can 
be rationalized by retro Diels-Alder reaction on X1(H2O)1 (B form) formed K involving HNCO loss, 
then cyclization of this form released β-lactam derivative containing of a clustered water (L). The L 
can tautomerize to H form (β-lactim). As demonstrates, the water molecule is appeared in many of 
the fragments and clustered to fragments by strong hydrogen-bonding (Scheme 3).  

 
The fragment of 4-fluorobenzonitrile ion radical at m/z 121 (5d) can also arise from retro-Diels-

Alder reaction of 1d and 2d on pyridazine ring moiety (Scheme 3). Fluorobenzene cation at m/z 95 
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generated from 5d with loss of cyanide radical. Fluorobenzene cation can also generated by 
heterolytic cleavage of the bond between C3-C9 in 1d and/or 2d molecule. The fragment of the 
fluorocyclobutadiene cation at m/z 69 generated from fluorobenzene cation with loss of natural 
acetylene and then loss of acetylene twice produced fluoroacetylene cation at m/z 43. This fragment 
converted to fluoroacetylene ion radical at m/z 44 by hydrogen radical capturing.  

 
One of important fragmentation on these compounds is the retro-Diels-Alder reaction on 

pyrimidine ring moiety. This reaction generated the fragment of M with loss of HOCN in 1d and 
HSCN in 2d and then proton radical capturing produced ion radical of N at m/z 217. The ion radical 
of diazonium salt derivative (O) at m/z 190 generated from N with loss of neutral cyanic acid (HCN). 
Finally, the ion radical O generated the fragment of P at m/z 162 with loss of neutral nitrogen gas 
(N2) (Scheme 3).  

 
The significant peak of 4-fluorobenzonitrile (5d) at m/z 121 and ion radical intermediate (Q) 

(from 3d) which arises through a retro-Diels–Alder reaction in pyridazine ring moiety (Scheme 4). 
The hydrogen radical capturing of ion radical intermediate Q produces cation intermediate (R), then 
cyclized, produced cation intermediate (S). The cation intermediate S, rearranged to seven membered 
ring cation intermediate (T(i)) (ring enlargement) is that of resonance form of T(ii) (1,3,5-
oxadiazepine-7-ium 6T(ii) at m/z 95 and its sulfur analogue 7(Tii) at m/z 111). This fragmentation is 
similar to that of other compounds in this study (1a-c and 2a-c) (Scheme 4). In parallel to 
fragmentation mentioned above, 3-aryloxazolo[4,5-c]pyridazine (3a-d) and 3-arylthiazolo[4,5-
c]pyridazine (4a-d) generate the aryl acetylenes (8a-d) at m/z 102 (8a), 181 (8b), 136 (8c) and 120 
(8d), respectively, due to retro-Diels-Alder reaction on pyridazine ring moiety (Scheme 4). 

 
One of the most important phenomenons in the fragmentation of these molecules (1a-d and 2a-d) 

is the water clustered molecule strongly attached to each fragments. It seems that the water molecule 
has made strong intermolecular H-bonding with fluorine atom (F---H–O–H) and/or with polar 
functional groups as –OH, C=O, –NH, –N=N– and weakly with C=S and –SH in corresponding 
fragment species in 1a-d and 2a-d. 

 
Another interesting, important and intricate phenomenon in the spectra of 1a-d and 2a-d are the 

mass of the fragments generated from dimer form containing of two clustered water molecules 
(X2(H2O)2). The range of these mass fragments are at 276 < m/z < 552 in 1d and at 292 < m/z < 584 
in 2d as representative (Table 1). The fragment of L (m/z 233) can also generate by loss of HNCO 
and HNCS from 1d and 2d, respectively. The loss of water from L generated the fragment of U at 
m/z 215. The β-lactam U dimerized to fragment of W at m/z 430. In parallel, fragment of L generated 
the fragment X at m/z 190 by loss of HNCO. One of the other possible way to obtaining of the m/z 
121 (Y) is the loss of water and propiolonitrile molecules from X (Scheme 5).  

 
There are other pathways that may generate important fragments from dimers of 1d and 2d 

(Scheme 6). Dimer A[i] (lactam form) of 1d and 2d can tautomerized to dimer A[ii] (lactim form). 
The loss of two molecules of H2S from dimer A[ii] of 2d generated the centrosymmetric dimer (Z) at 
m/z 516. Dimer Z can exist in two tautomeric forms of lactim (Z[i]) and lactam (Z[ii]) forms 
(Scheme 6). The loss of H2O, 2H2O, OH radical and 2OH radicals from dimer form of 1d (A[i]), 
generated the fragments of m/z 534, 516, 535 and 518, respectively. Unfortunately, an attempt to 
characterization of the structures of these unknown fragments is failed. Similarly, these 
fragmentations of 2d generated the fragments of m/z 566, 548, 567 and 550, respectively. The 
fragments of m/z 516 (from 1d) and m/z 548 (from 2d) can release via intramolecularly 
rearrangement on lactim dimer form (A[ii]). Representatively, the loss of SH radical from lactim 
dimer form of 2d (A[ii]) generated the fragment at m/z 551. It seems that, this fragment generated via 
intramolecularly rearrangement of lactim dimer form of 2d (A[ii]) (Scheme 6).  
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Table 1. Selected mass fragments of 1a-d and 2a-d 
Compd. Selected mass fragments, m/z (%) 
1a 475 (3), 396 (5), 318 (2), 275 (2), 258 ([M++18], 62), 241 ([M++1], 100), 240 ([M+], 4), 213 (18), 199 (30), 187 (25), 172 (25), 

158 (20), 115 (42), 77 (26). 
1b 579 (1), 551 (2), 537 (2), 523 (2), 498 (17), 455 (20), 397 (20), 383 (13), 368 (20), 353 (10), 338 ([M++18], 42), 321 ([M++2], 

100), 319 ([M+], 98), 295 (42), 241 (36), 227 (34), 183 (46), 115 (43), 97 (42), 83 (65), 57 (72), 43 (79) 
1c 587 ([M++18]2, 0.5), 551 (1), 480 (1), 436 (1), 407 (2), 368 (1), 345 (2), 316 (3), 292 ([M++18], 57), 277 ([M++2], 50), 275 

([M+], 100), 251 (33), 249 (100), 206 (39), 176 (18), 164 (17), 149 (50), 136 (68), 115 (65), 75 (40), 44 (47) 
1d 552 ([M++18]2, trace), 535 (trace), 534 (trace), 518 (trace), 516 ([M+]2, trace), 464 (0.5),355 (0.5), 276 ([M++18], 50), 260 

(20), 259 ([M++1], 100), 233 (33), 217 (23), 190 (22), 133 (41), 120 (30) 
2a 548 ([M++18]2, trace), 473 (2), 395 (3), 368 (3), 318 (2), 274 ([M++18], trace), 256 ([M+], 1), 230 (100), 199 (90), 172 (94), 

143 (33), 115 (43), 100 (39), 77 (42), 51 (13) 
2b 587 (2), 551 (3), 537 (4), 523 (5), 509 (3), 495 (3), 436 (2),407 (5), 382 (2), 368 (24), 353 (6), 339 (5), 337 ([M++2], 1), 335 

([M+], 1), 310 (98), 308 (100), 279 (39), 277 (39), 252 (50), 250 (50), 223 (20), 221 (22), 183 (24), 142 (25), 113 (29), 57 
(33), 43 (30) 

2c 618 ([M++18]2, trace), 436 (1), 407 (2), 400 (3), 292 ([M++2], 2), 290 ([M+], 7), 266 (71), 264 (100), 235 (28), 233 (76), 208 
(32), 206 (94), 177 (33), 149 (25), 137 (31), 113 (26) 

2d 604 (3), 577 (7), 567 (2), 566 (4), 551 (10), 550 (5), 548 (4), 537 (5), 534 (2), 523 (5), 516 (0.5), 409 (2), 480 (2), 464 (3), 436 
(5), 421 (2), 407 (9), 393 (4), 368 (10), 353 (5), 339 (8), 313 (20), 292 ([M++18], 38), 275 ([M++1], 100), 248 (73), 233 (28), 
217 (28), 190 (41), 149 (35), 121 (34), 57 (34), 43 (34) 
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Scheme 1. Formula structures of 1a-d and 2a-d. 
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Scheme 3. Possible mass fragmentation patterns of 1d and 2d. 
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Scheme 4. Possible mass fragmentation patterns of 3-aryloxazolo[4,5-c]pyridazine (3a-d) and 3-
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Fig. 1. Mass spectrum of 1d (a) and its expanded spectrum (b) 

 
 

 
Fig. 2. Mass spectrum of 2d (a) and its expanded spectrum of high mass fragmentation region (b and c) 
 

3. Conclusion 
 

      In summary, the mass fragmentations of the new compounds 1a-d and 2a-d were studied by electron 
impact (EI) mass spectroscopy. All these compounds showed ion clusters of the type X1(H2O)1 (in high 
natural abundance) and X2(H2O)2 (in low natural abundance) where X is 3-arylpyrimido[4,5-c]pyridazine-
5,7(6H,8H)-diones (1a-d) and 3-aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones (2a-d). 
The water molecule strongly clustered in monomer molecules by strong intermolecular H-bonding. Many 
of the fragments of 1a-d and 2a-d show water clustered via strong intermolecular H-bonding. 
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4. Experimental 
 

The experiments were performed with the instrument specifications: Manufacturer Company; Agilent 
Technology (HP) type, MS Model; 5973 network mass selective detector Electron Impact (EI) 
spectrometer, Analyzer; quadrupole. The vapor species were ionized with electrons of energy 70 eV. The 
temperature range measurements were 50-350 °C, ion source and analyzer temperatures was 230 ºC.  
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The novel synthesis of the compounds 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones 1a-d 
and 3-aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones 2a-d has been synthesized by 
our research group 35. 
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