Current Chemistry Letters 2 (2013) 27-34

Contents lists available at Growing Science

Current Chemistry Letters

homepage: www.GrowingScience.com/ccl

Microwave-assisted solvent-free synthesis of 14-aryl/alkyl-14H-

dibenzo[a,j]xanthenes and tetrahydrobenzo[a]xanthen-11-ones catalyzed by nano silica phosphoric acid

Abdolhamid Bamoniri^{*a}, Bi Bi Fatemeh Mirjalili^b and Sedigeh Nazemian^a

^o Department of Chemistry, College	of Science, Yazd University, Yazd, P.O.Box 8915813149,, Iran
CHRONICLE	A B S T R A C T
Article history: Received June 29, 2012 Received in Revised form November 6, 2012 Accepted 16 December 2012 Available online 16 December 2012	Nano silica phosphoric acid (nano SPA) was applied as a catalyst for synthesis of 14 -aryl/alkyl- $14H$ -dibenzo[a,j]xanthenes and tetrahydrobenzo[a]xanthen- 11 -ones in microwave oven under solvent free conditions. High efficiency, easy availability and reusability are some advantages of this catalyst.

^aDepartment of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I. R. Iran

© 2013 Growing Science Ltd. All rights reserved.

1. Introduction

Multi-component reactions Nano silica phosphoric acid Microwave

Tetrahydrobenzo[a]xanthenes-11-ones

dibenzo[a,j]xanthenes Heterogeneous

Keywords:

catalvst

oven

14-aryl/alkyl-14H-

Multi-component reactions (MCRs) are special types of synthetically useful organic reactions in which three or more different starting materials react to form a product in one pot procedure¹. Such reactions are atom-efficient processes by incorporating the essential parts of the starting materials into the final product. MCRs are powerful tools in the modern drug discovery process and allow the fast, automated, and high through put generation of organic compounds².

* Corresponding author. Fax: +98 351 8210644 E-mail addresses: bamoniri@kashanu.ac.ir (A. Bamoniri)

© 2013 Growing Science Ltd. All rights reserved. doi: 10.5267/j.ccl.2012.12.002

14-Aryl/alkyl-14*H*-dibenzo[*a*,*j*]xanthenes and tetrahydrobenzo[*a*]xanthen-11-ones are produced *via* multi-component reactions in the presence of an acidic catalyst. These compounds have important biological and pharmaceutical activities such as antibacterial and anti-inflammatory ones³. The best procedure for synthesis of 14-aryl/alkyl-14*H*-dibenzo[*a*,*j*]xanthene is the mixing of 2-naphthol with aldehydes in the presence of a catalyst. This procedure have been catalyzed with silica sulfuric acid^{4,5}, Dowex-50W⁶, sulfamic acid⁷, HClO₄-SiO₂⁸, cyanuric chloride⁹, BF₃.SiO₂¹⁰ and InCl₃¹¹.

Tetrahydrobenzo[*a*]xanthenes-11-ones as benzoxanthene derivatives could be synthesized *via* one pot condensation of 2-naphthol, aldehydes and 1,3-diketones in the presence of an acidic catalyst. According to literature, this protocol was catalyzed by strontium triflate¹², proline triflate¹³, p-toluenesulfonic acid¹⁴, ammonium fluoride¹⁵ and NaHSO₄.SiO₂¹⁶. Silica phosphoric acid (SPA) is an efficient and reusable acidic catalyst. Previously, this catalyst was applied for coupling of thiols¹⁷ and synthesis of biginelli products¹⁸.

2. Results and Discussion

Silica phosphoric acid was prepared by reaction of silica chloride with dry phosphoric acid. It is noted that, silica chloride was prepared *via* reaction of silica gel and thionyl chloride. By using nano silica gel instead of silica gel, according to above pathway, nano silica phosphoric acid (nano-SPA) was prepared. The particle size of nano-SiO₂ and nano-SPA were measured by SEM and TEM imaging (Fig. 1).

The acid capacity of nano-SPA is 10.32 mmol.g⁻¹ and was determined by titration of 0.2 g of catalyst with standard solution of NaOH. The FT-IR (ATR) spectra of silica chloride, nano-SPA and $H_3PO_4.SiO_2$ were shown in figure 2. In all ATR spectra, the Si-O-H and Si-O-Si stretching bonds are appeared in 900 until 1100 cm⁻¹. In silica chloride spectrum, the Si-Cl stretching bond is appeared in 700 cm⁻¹. In ATR spectra of nano-SPA and $H_3PO_4.SiO_2$, the P-O-H, P=O, P-O stretching bonds are appeared 910-1040, 1637 and 2400-2800 cm⁻¹ respectively. According to above data, we suggested one structure for nano-SPA with PO₃H₂ on silica gel (Scheme 1).

Fig. 1. a) SEM image of nano-SiO₂, b) TEM image of nano-SiO₂, c) SEM image of nano-SPA, b) TEM image of nano-SPA.

Fig. 2. ATR of a) silica chloride, b) nano-SPA and c) H₃PO₄.SiO₂

The X-ray diffraction (XRD) patterns of nano-SiO₂ and nano-SPA are shown in figure 3. Nano-SiO₂ XRD pattern has a strong peak in 2 θ value of 21.8024° and FWHM equal to 1771 and nano-SPA XRD pattern has a strong broad peak in 21.718 and FWHM equal to 2.3616. According to scherrer's formula, the broadening of peaks implies the decrease in crystalline size of nano-SPA.

Fig. 3. X-ray diffraction (XRD) pattern of a) nano-SiO₂ and b) nano-SPA

In continuation of our investigations on the application of solid acids in organic synthesis, $^{19-22}$ we have investigated the synthesis of 14-aryl/alkyl-14*H*-dibenzo[*a*,*j*]xanthenes and tetrahydrobenzo[*a*]xanthen-11-one in the presence of nano-SPA as an acid catalyst. Model reactions were examined to optimize the reaction conditions in microwave (Scheme 2). Reactions in the presence of various amount of catalysts and various time of irradiation in microwave oven revealed that the best yield of products were obtained in 8 minutes irradiation using 0.04 g of SPA or 0.02 g of nano-SPA (Table 1, Entries 5 and 9).

To examine the reusability of nano-SPA in a microwave condition, after each run, the product was dissolved in CHCl₃ and filtered. The catalyst was washed with acetone and reused. Treatment with acetone removes the tar from the catalyst surface more efficiently (Table 1, Entries 10 and 11). The catalyst was reusable although a gradual decline was observed in its activity. All products were

known and characterized by FT-IR, ¹H-NMR, and the physical properties of those reported in the literature.

Table 1. Optimization of the reaction conditions for preparation of (3) and (5) in microwave oven under solvent free conditions

		Compound (3)	Compound (5)
Entry	Catalyst (g)	Time (min)/ Yield (%) ^a	Time (min)/ Yield (%) ^b
1	SPA (0.02)	12/57	12/62
2	SPA (0.03)	12/72	12/70
3	SPA (0.04)	12/80	12/78
4	SPA (0.05)	12/91	12/92
5	SPA (0.04)	8/90	8/90
6	SPA (0.04)	6/81	5/80
7	nano-SPA (0.04)	6/95	5/96
8	nano-SPA (0.03)	6/94	8/95
9	nano-SPA (0.02)	6/95	6/95
10	nano-SPA (0.02) , 2 nd run	6/75	6/70
11	nano-SPA (0.02), 3 rd run	6/60	6/50

^aThe molar ratio of 2-naphthol : benzaldehyde is 2:1 ^b The molar ratio of 2-naphthol : benzaldehyde : dimedone is 1:1:1

According to the obtained best condition, we have applied 2-naphthol and various aldehydes: a) for

According to the obtained best condition, we have applied 2-naphthol and various aldehydes: a) for the synthesis of 14-aryl/alkyl-14H-dibenzo[a,j]xanthene derivatives (Scheme 3 and Table 2) and b) with dimedone for the synthesis of tetrahydrobenzo[a]xanthen-11-one (Scheme 4 and Table 3).

Scheme 4

Table 2. Synthesis of 14-aryl/alkyl-14*H*-dibenzo[a,j]xanthenes (7_{a-h})in the presence of nano-SPA under solvent-free conditions and microwave irradiation for 6 min.

Entry	R	Yield (%) ^b	M.P. (°C)	
Enuy			Found	Reported Ref
7 _a	C ₆ H ₅	90	183-184	185 ⁹
7 _b	$4-ClC_6H_4$	92	288-289	289-290 ⁹
7 _c	$4-MeC_6H_4$	88	225-227	227–229 ⁹
7 _d	(CH ₃) ₂ CH-	70	155-156	156-157 ⁸
7 _e	CH ₃ CH ₂ CH ₂ -	75	150-152	152-154 ⁷
7 _f	$4-OHC_6H_4$	85	130-131	133–134 ¹⁰
7 _g	$3,4(OMe)_2C_6H_4$	80	194-195	198–199 ⁸
7 _h	$2,4(Cl)_2C_6H_4$	90	250-251	251-252 ⁷

^aThe ratio of 2-naphthol (mmole): aldehydes (mmole): nano SPA (g) is 1:1:0.02.

^b Isolated yield.

Entry	R	Yeild (%) ^b	Mp (°C)		
			Found	Reported Ref	
9 _a	C ₆ H ₅	88	150-151	151-153 ¹²	
9 _b	$4-BrC_6H_4$	96	181-183	186-187 ¹²	
9 _c	$4-OHC_6H_4$	96	148-1149	150-151 ¹⁵	
9 _d	$4-ClC_6H_4$	96	178-180	180-182 ¹⁵	
9 _e	$4-O_2NC_6H_4$	95	181-182	183-185 ¹²	
9 _f	4-MeOC ₆ H ₄	84	206-207	204-205 ¹⁵	
9 _g	$3-O_2NC_6H_4$	94	164-166	168-170 ¹²	
9 _h	$3-BrC_6H_4$	93	173-174	175-176 ¹⁵	

Table 3. Synthesis of tetrahydrobenzo[a]xanthen-11-ones (9_{a-h}) in the presence of nano-SPA under solvent-free conditions and microwave irradiation for 6 min

^aThe ratio of 2-naphthol (mmole): aldehydes (mmole):dimedone (mmole): nano-SPA (g) is 1:1:1:0.02. ^b Isolated yield.

3. Conclusions

We have demonstrated a simple method for the synthesis of tetrahydrobenzo[a]xanthen-11-ones and 14-aryl/alkyl-14*H*-dibenzo[a,j]xanthenes using nano-SPA as eco-friendly and efficient catalyst. Short reaction times, high yields, a clean process, simple methodology, easy work-up and green conditions are advantages of these protocols.

Acknowledgements

The authors are grateful to University of Kashan for supporting this work by Grant No (159189/4).

Experimental

Materials and Methods

The materials were purchased from Merck Company and were used without any additional purification. Products were characterized by FT-IR, ¹H-NMR and comparison of their physical properties with those reported in the literature. FT-IR (ATR) spectra were run on a Bruker, Eqinox 55 spectrometer. A Bruker (DRX-400 Avance) NMR was used to record the ¹H NMR spectra. The SEM and TEM of nano particles were determined with a VEGA/TESCAN scanning electron microscope and Leo 912AB OMEGA transmission electron microscopy, respectively. The X-ray diffraction (XRD) patterns of materials were recorded by employing a Philips Xpert MPD diffract meter equipped with a Cu K α anode ($\lambda = 1.54$ A°) in the 2 θ range from 5 to 80°.

Typical procedures for the preparation 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes under microwave condition in the presence of nano-SPA

In a 5 ml microwave reactor vessel, a mixture of of 2-naphthol (2 mmol), aldehyde (1 mmol) and nano-SPA (0.02 g) was irradiated in microwave oven for 6 minutes. After completion of the reaction, the product was dissolved in hot ethanol and filtered to recover the catalyst. The solvent of filtrate was evaporated to obtain the product. The crude product was recrystallized from ethanol.

Typical procedures for the preparation of tetrahydrobenzo[a]xanthenes-11-one under microwave condition in the presence of nano-SPA

In a 5 ml microwave reactor vessel, a mixture of 2-naphthol (1 mmol), aldehyde (1 mmol), 1,3diketone (1.2 mmol), and nano-SPA (0.02 g) was irradiated in microwave oven for 6 min. After completion of the reaction, the product was dissolved in hot ethanol and filtered to recover the catalyst. The solvent of filtrate was evaporated to obtain the product. The crude product was recrystallized from ethanol.

Selected spectroscopic data

14-Phenyl-14*H***-dibenzo[***a,j***]xanthenes (Table 2, Entry 7_a): White solid, FT-IR: \bar{v} (KBr)= 3020, 2900, 1621, 1592, 1513, 1403, 1252, 827, 803, 766, 744, 700 cm⁻¹, ¹H-NMR (400 MHz, CDCl₃) \delta=6.3 (s, 1H), 6.8 (t,** *J***=7.2 Hz, 1H), 6.9 (t,** *J***=7.2 Hz, 2H), 7.2 (t,** *J***=7.2 Hz, 2H), 7.3 (d,** *J***=8.8 Hz, 2H), 7.36 (d,** *J***=8 Hz, 2H), 7.4 (d,** *J***=7.2 Hz, 2H), 7.6 (d,** *J***=9.2 Hz, 2H), 7.63 (d,** *J***=8 Hz, 2H), 8.2 (d,** *J***=8.4 Hz, 2H) ppm.**

14-(4-Chlorophenyl)-14*H***-dibenzo[***a***,***j***]xanthenes (Table 2, Entry 7_b): White solid, FT-IR: \bar{v} (KBr) = 3068, 2900, 1621, 1591, 1514, 1484, 1400, 1239, 831, 806, 777, 740, 711 cm⁻¹, ¹H-NMR (400 MHz, CDCl₃) \delta = 6.27 (s, 1H), 6.9 (d,** *J***=8.4 Hz, 1H), 7.3-7.2 (m, 6H), 7.4 (t,** *J***=7.2 Hz, 2H), 7.6 (d,** *J***=9.2 Hz, 2H), 7.66 (d,** *J***=8 Hz, 2H), 8.1 (d,** *J***=8.4 Hz, 2H) ppm.**

14-(4-Tolyl)-14*H***-dibenzo[***a,j***]xanthene (Table 2, Entry 7_c):** White solid, FT-IR: \bar{v} (KBr) = 3020, 2900, 1621, 1591, 1509, 1458, 1430, 1248, 809, 740 cm⁻¹, ¹H-NMR (400 MHz, CDCl₃) δ = 2 (s, 3H), 6.27 (s, 1H), 6.77 (d, *J*=8 Hz, 2H), 7.3 (m, 4H), 7.3 (d, *J*=8.8 Hz, 2H), 7.4 (t, *J*=7.2 Hz, 2H), 7.6 (d, *J*=8.8 Hz, 2H), 7.64 (d, *J*=8 Hz, 2H), 8.2 (d, *J*=8.4 Hz, 2H) ppm.

14- Isopropyl-14*H***-dibenzo**[*a*,*j*]**xanthene (Table 2, Entry 7**_d): White solid, FT- IR: \bar{v} (KBr) = 3020, 2900, 1619, 1589, 1514, 1457, 1433, 1236, 816, 738 cm⁻¹, ¹H-NMR (400 MHz, CDCl₃) δ = 0.647 (d, 6H), 1.2 (m, 1H), 5.2 (s, 1H), 7.2 (s br, 4H), 7.4 (s br, 2H), 7.6 (d, *J* = 8 Hz, 2H), 7.68 (d, *J* = 6.4 Hz, 2H), 8.1 (d, *J* = 6 Hz, 2H) ppm

14-Propyl-14*H***-dibenzo[***a,j***]xanthenes (Table 3, Entry 7_e):, White solid, FT- IR: \bar{v} (KBr) 3060, 2953, 2867, 1621, 1590, 1516, 1468, 1397, 1242, 813, 747 cm⁻¹, ¹H NMR (400 MHz, CDCl₃): \delta = 0.4 (s br, 3H), 0.8 (s br, 2H), 1.8 (m, 2H), 5.2 (s, 1H), 7.1 (d, J = 8.8 Hz, 2H), 7.28 (t, J = 7.6 Hz, 2H), 7.4 (t, J = 7.6 Hz, 2H), 7.6 (d, J = 8.8 Hz, 2H), 7.7 (d, J = 8 Hz, 2H), 8 (d, J = 8.4 Hz, 2H) ppm.**

14-(4-Hydroxyphenyl)-14*H***-dibenzo**[*a*,*j*]**xanthenes (Table 2, Entry 7**_f): White solid, FT- IR: \bar{v} (KBr)= 3403, 3058, 2920, 1620, 1593,1512, 1457, 1432, 1401, 1245, 1175, 1064, 1038, 962, 817, 746, 609 cm⁻¹, ¹H-NMR (400 MHz, CDCl₃) δ = 6.23 (s, 1H), 6.40 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 8.17 (d, *J* = 8.4 Hz, 2H) ppm.

14-(3,4-Dimethoxyphenyl)-14*H***-dibenzo**[*a*,*j*]**xanthenes (Table 2, Entry 7**_g): White solid, FT- IR: \bar{v} (KBr) = 3064, 2932, 2832, 1622, 1592, 1514, 1457, 1433,1401, 1239, 1140, 1072, 1020, 961, 859, 819, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 3.49 (s, 6H), 6.26 (s, 1H), 6.46 (d, *J*=8.0 Hz, 1H), 6.72 (s, 1H), 6.93 (d, *J*=8.0 Hz, 1H), 7.22-7.70 (m, 12H), 8.21 (d, *J*=6.0 Hz, 2H) ppm

14-(2,4-Dichlorophenyl)-14H-dibenzo[*a*,*j*]**xanthenes (Table 2, Entry 7**_h): White solid, FT- IR: \bar{v} (KBr)= 3059, 2920, 1620, 1592, 1515, 1464, 1403, 1247, 1142, 1103, 1041, 960, 863, 836, 808, 743, 699, 608 cm⁻¹ ¹H-NMR (400 MHz, CDCl₃) δ = 6.57 (s, 1H), 6.71 (d, *J*=6.8 Hz, 1H), 7.05-7.50 (m, 10H), 7.63 (t, *J*=7.5 Hz, 2H), 8.46 (d, *J*=8.5 Hz, 2H) ppm.

9. 9. Dimethyl-12-phenyl-8, 9, 10, 12-tetrahydrobenzo[*a*]**xanthen-11-one (Table 3, Entry 9**_a): White solid, FT- IR: \bar{v} (KBr) = 3053, 2957, 2891, 1649, 1620, 1596, 1469, 1452, 1372, 1241, 1226, 1184, 1032, 837, 747, 723, 697 cm^{-1. 1}H NMR (400 MHz, CDCl₃) δ =0.97 (s, 3H), 1.13 (s, 3H), 2.25 (d, *J*=16 Hz, 1H, COCH₂), 2.32 (d, *J*=16.4 Hz, 1H, COCH₂), 2.58 (s, 2H), 5.71 (s, 1H), 7.06 (t, *J*=7.6 Hz, 1H), 7.18 (t, *J*=8 Hz, 2H), 7.32-7.46 (m, 5H), 7.77 (d, *J*=8.4 Hz, 1H), 7.79 (d, *J*=6.4 Hz, 1H), 8.00 (d, *J*=8.4 Hz, 1H) ppm.

12(4-Bromophenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo[*a*]**xanthen-11-one (Table 3, Entry 9**_b): White solid, FT- IR: \bar{v} (KBr) 2966, 2876, 1640, 1622, 1593, 1484, 1372, 1274, 1220, 1174, 1071, 1010, 837, 811, 756 cm⁻¹, ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (s, 3H), 1.13 (s, 3H), 2.25 (d, *J*=16.4 Hz, 1H, COCH₂), 2.32 (d, *J*=16 Hz, 1H, COCH₂), 2.58 (s, 2H), 5.67 (s, 1H), 7.22 (d,

J=7.2 Hz, 2H), 7.29 (d, *J*=7.2 Hz, 2H), 7.33 (d, *J*=9.2 Hz, 1H), 7.40 (t, *J*=7.6 Hz, 1H), 7.45 (t, *J*=7.6 Hz, 1H), 7.78 (d, *J*=7.2 Hz, 1H), 7.80 (d, *J*=6.8 Hz, 1H), 7.91 (d, *J*=8 Hz, 1H) ppm.

12-(4-hydroxyphenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo[*a*]**xanthen-11-one (Table 3, Entry 9**_c): White solid, FT- IR: \bar{v} (KBr) = 3610, 3141-3440, 3029, 2952, 2891, 1649, 1615, 1595, 1510, 1466, 1371, 1234, 1227, 1174, 1014, 837, 818, 747 cm⁻¹, ¹H NMR (500 MHz, CDCl₃): δ = 0.99 (s, 3H), 1.14 (s, 3H), 2.31 (d, *J*=16.4 Hz, 1H, COCH₂), 2.35 (d, *J*=16 Hz, 1H, COCH₂), 2.48 (s,1H), 2.59 (s, 2H), 5.65 (s,1H), 6.62 (d, *J*=8.5 Hz, 2H), 7.19 (d, *J*=8.6 Hz, 2H), 7.39 (d, *J*=6.8 Hz, 1H), 7.45 (t, *J*=8.4 Hz, 1H), 7.78 (d, *J*=8.8 Hz, 1H), 7.80 (d, *J*=6.9 Hz, 1H), 8.0 (d, *J*=8.4 Hz, 1H) ppm.

12-(4-chlorophenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo[a]xanthen-11-one (Table 3, Entry 9_d): White solid, FT- IR: \bar{v} (KBr) = 2957, 2884, 1644, 1622, 1596, 1487, 1469, 1372, 1234, 1221, 1141, 1088, 1013, 845, 838, 750 cm⁻¹, ¹H NMR (400 MHz, CDCl₃) δ = 0.97 (s, 3H), 1.13 (s, 3H), 2.25 (d, *J*=16.4 Hz, 1H, COCH₂), 2.32 (d, *J*=16 Hz, 1H, COCH₂), 2.58 (s, 2H), 5.69 (s, 1H), 7.14 (d, *J*=8.4 Hz, 2H), 7.28 (d, *J*=8.4 Hz, 2H), 7.33 (d, *J*=8.8 Hz, 1H), 7.40 (td, *J*=6.8 and 1.2 Hz, 1H), 7.78 (d, *J*=8.8 Hz, 1H), 7.8 (d, *J*=5.6 Hz, 1H), 7.91 (d, *J*=8.4 Hz, 1H).

9,9-Dimethyl-12-(4-nitrophenyl)-8,9,10,12-tetrahydrobenzo[*a*]**xanthen-11-one (Table 3, Entry 9**_e): Yellow solid; FT- IR: \bar{v} (KBr) = 2956, 1643, 1622, 1594, 1477, 1513, 1477, 1376, 1342, 1244, 1221, 1183 1031, 850, 830, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 0.95 (s, 3H), 1.14 (s, 3H), 2.25 (d, *J*=16.4 Hz, 1H, COCH₂), 2.34 (d, *J*=16 Hz, 1H, COCH₂), 2.61 (s, 2H), 5.82 (s,1H), 7.36 (d, *J*= 9.2 Hz, 1H), 7.39-7.47 (m, 2H), 7.52 (d, *J*=8.8 Hz, 2H), 7.81-7.85 (m, 3H), 8.05 (d, *J*=8.4 Hz, 2H) ppm.

12-(4-methoxyphenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo[a]xanthen-11-one (Table 3, Entry 9_f): White solid, FT- IR: \bar{v} (KBr) 2957, 2898, 1644, 1611, 1594, 1509, 1460, 1371, 1245, 1249, 1223, 1164, 1027, 1025, 833, 812, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 0.98 (s, 3H), 1.12 (s, 3H), 2.25 (d, *J*=16 Hz, 1H, COCH2), 2.32 (d, *J*=16.4 Hz, 1H, COCH₂), 2.57 (s, 2H), 3.69 (s, 3H), 5.66 (s, 1H), 6.71 (d, *J*=8.4 Hz, 2H), 7.20-7.27 (m, 2H), 7.32 (d, *J*=8.8 Hz, 1H), 7.38 (t, *J*=8 Hz, 1H), 7.44 (t, *J*=8 Hz, 1H), 7.76 (d, J=9.2 Hz, 1H), 7.78 (d, *J*=9.2 Hz, 1H), 7.99 (d, *J*=8.4 Hz, 1H) ppm.

9,9-Dimethyl-12-(3-nitrophenyl)-8,9,10,12-tetrahydrobenzo[*a*]**xanthen-11-one (Table 3, Entry 9**_g): Yellow solid; FT- IR: ῡ (KBr) 2969, 2891, 1645, 1622, 1594, 1465, 1536, 1477, 1371, 1355, 1249, 1218, 1174, 1024, 830, 806, 779, 689, 741 cm⁻¹, ¹H NMR (400 MHz, CDCl₃): δ = 0.96 (s, 3H), 1.14 (s, 3H), 2.25 (d, *J*=16.4 Hz, 1H, COCH₂), 2.34 (d, *J*=16 Hz, 1H, COCH₂), 2.62 (s, 2H), 5.82 (s,1H), 7.36-7.48 (m, 4H), 7.81-7.84 (m, 3H), 7.78 (d, *J*=8.4 Hz, 1H), 7.94 (d, *J*=8 Hz, 1H), 8.12 (s, 1H) ppm.

12-(3-Bromophenyl)-9,9-dimethyl-8,9,10,12-tetrahydrobenzo[*a*]**xanthen-11-one (Table 3, Entry 9**_h): White solid, FT- IR: ῡ (KBr) 2958, 2891, 1646, 1622, 1594, 1470, 1432, 1370, 1282, 1218, 1175, 1076, 1024, 805, 879, 775, 692, 744 cm⁻¹, ¹H NMR (400 MHz, CDCl₃): δ = 0.99 (s, 3H), 1.13 (s, 3H), 2.26 (d, *J*=16.4 Hz, 1H, COCH₂), 2.32 (d, *J*=16 Hz, 1H, COCH₂), 2.59 (s, 2H), 5.68 (s,1H), 7.06 (t, *J*=8 Hz, 1H), 7.20 (d, *J*=8.4 Hz, 1H), 7.34 (d, *J*=8.4 Hz, 2H), 7.39-7.42 (m, 2H), 7.47 (t, *J*=8 Hz, 1H), 7.79 (d, *J*=5.2 Hz, 1H), 7.81 (d, *J*=6.4 Hz, 1H), 7.92 (d, *J*=8.4 Hz, 1H) ppm.

References

- 1. Domling A., and Ugi I. (2000) Multicomponent reactions with isocyanides, *Angew. Chem. Int. Ed. Engl.*, 39, 3168-3210.
- 2. Weber L. (2002) The application of multicomponent reactions in drug discovery, *Curr. Med. Chem.*, 9, 1241–1253.
- 3. Seyyedhamzeh M., Mirzaei P., and Bazgir A. (2008) Solvent-free synthesis of aryl-14*H*-dibenzo[*a,j*]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst, *Dyes and Pigments*, 76, 836-839.

- 4. Shaterian H. R., Ghashang M., and Hassankhani A. (2008) One-pot synthesis of aryl-14*H*-dibenzo[*a*,*j*]xanthene leuco-dye derivatives, *Dyes and Pigments*, 76, 564-568.
- 5. Imani Shakibaei G., Mirzaei P., and Bazgir A. (2007) Dowex-50W promoted synthesis of 14aryl-14*H*-dibenzo[*a,j*]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions, *Appl. Catal. A: Gen.*, 325, 188–192.
- 6. Rajitha B., Kumar S. B., Reddy T. Y., Reddy N. P., and Sreenivasulu N. (2005) Sulfamic acid a novel and efficient catalyst for the synthesis of aryl-14*H*-dibenzo[*a*,*j*] xanthenes in conventional heating and microwave irradiation, *Tetrahedron Lett.*, 46, 8691-8693.
- Bigdeli M. A., Heravi M. M., and Mahdavinia G. H. (2007) Silica supported perchloric acid (HClO₄-SiO₂): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14*H* dibenzo[*a*,*j*]xanthenes, *J. Mol. Catal. A: Chem.*, 275, 25-29.
- 8. Bigdeli M. A., Heravi M. M., and Mahdavinia G. H. (2007) Wet cyanuric chloride catalyzed simple and efficient synthesis of 14-aryl or alkyl-14*H*-dibenzo[*a*,*j*]xanthenes, *Catal. Commun.*, 8, 1595-1598.
- 9. Mirjalili B. F., Bamoniri A., and Akbari A. (2008) BF₃·SiO₂: an efficient alternative for the synthesis of 14-aryl or alkyl-14*H*-dibenzo[*a*,*j*]xanthenes, *Tetrahedron Lett.*, 49, 6454-6456.
- Nandi G.C., Samai S., Kumar R., and Singh, M.S. (2009) An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition, *Tetrahedron*, 65, 7129-7134.
- 11. Li J., Tang W., Lu L., and Su W. (2008) Strontium triflate catalyzed one-pot condensation of β -naphthol, aldehydes and cyclic 1, 3-dicarbonyl compounds, *Tetrahedron Lett.*, 49, 7117-7120.
- 12. Li J., Lu L., and Su W. (2010) A new strategy for the synthesis of benzoxanthenes catalyzed by prolinetriflate in water, *Tetrahedron Lett.*, 51, 2434-2437.
- Khurana J., and Magoo M. D. (2009) *p*-TSA catalyzed one-pot synthesis of 12-aryl-8, 9, 10, 12tetrahydrobenzo[*a*]xanthen-11-ones in ionic liquid and neat conditions, *Tetrahedron Lett.*, 50, 4777-4780.
- 14. Gao S., Tsai C., and Yao H. (2009) A Simple and green approach for the synthesis of tetrahydrobenzo[*a*]-xanthen-11-one derivatives using tetrabutyl ammonium fluoride in water, *Synlett*, 6, 949-954.
- 15. Das, B., Laxminarayana K., Krishnaiah M., and Srinivas Y. (2007) An efficient and convenient protocol for the synthesis of novel 12-aryl- or 12-alkyl-8, 9, 10, 12-tetrahydrobenzo[*a*]xanthen-11-one derivatives, *Synlett*, 20, 3107-3112.
- Kumar P. S., Kumar S. B., Rajitha B., Reddy N. P., Sreenivasulua N., and Reddy T. Y. (2006) A novel one pot synthesis of 14-aryl-14*H*-dibenzo[*a*,*j*]xanthenes catalyzed by selectfluor under solvent free conditions, *ARKIVOC*, 46-52.
- 17. Zolfigol M.A., Shirini F., Zamani K., Ghofrani E., and Ebrahimi S. (2004) Silica phosphoric Acid NaNO₂ as a novel heterogeneous system for the coupling of thiols to their corresponding disulfides, *Phosphourus, Sulfur and Silicon and the Related Elements*, 179, 2177-2182.
- 18. Bamoniri A., Mirjalili B. F., and Nazemian, S. (2011) Nano-Silica phosphoric acid: an efficient catalyst for one-pot synthesis of 3, 4-dihydropyrimidin-2(1*H*)-ones (thiones) under solvent-free or sonication conditions, *Iranian J. Catal.*, 2, 17-21
- 19. Mirjalili B. F., Bamoniri A., and Zamani L. (2012) One-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles promoted by nano- TiCl₄.SiO₂, *Scientia Iranica* 19, 565-568.
- 20. Mirjalili B. F., Bamoniri A., Akbari A., and Taghavinia N. (2011) Nano-TiO₂: an eco-friendly and re-usable catalyst for the synthesis of 14-aryl or alkyl-14*H*-dibenzo[*a*,*j*]xanthenes, *J*.*Iran Chem. Soc.*, 8, S129-S134.
- 21. Mirjalili B. F., Bamoniri A., and Akbari A. (2011) Synthesis of 14-aryl or alkyl-14*H*-dibenzo[*a*,*j*]xanthenes promoted by Mg(HSO₄)₂, *Chininese Chem. Lett.*, 22, 45-48.
- 22. Mirjalili B. F., Bamoniri A., and Akbari A. (2012) BF₃.SiO₂: an efficient catalyst for the synthesis of azo dyes at room temperature, *Curr. Chem. Lett.*, 1, 109–114.

34