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 This manuscript reports the preparation and toxicological efficacy testing of nine 
oxoimidazolidine and cyanoguanidine compounds (3a, 3b, 3c, 3d, 3e, 3f, 3g 4a, and 4b) against 
cowpea aphid, Aphis craccivora Koch. Bioefficacy data revealed that the tested compounds 
exhibited a range of toxicological activities against these insects, with compound 3b being the 
most toxic and compound 4a being the least effective. The LC50 value of compound 3b was 1.72 
ppm for adults and 0.02 ppm against nymphs of the cowpea aphid, while the LC50 value of 
compound 4a was 72.51 ppm for adults and 18.02 ppm against nymphs. The manuscript also 
presents the structure-activity relationships of these compounds. These results provide valuable 
insights into the development of effective pest control agents for the management of such insects. 
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Graphical Abstract 
1. Introduction  

 

 
       Oxoimidazolidine and cyanoguanidine compounds represent two classes of organic chemicals that have been the 
subject of extensive research due to their various bioactive properties in different fields such as pharmaceuticals, 
agrochemicals, and materials science, in addition to the applications of the other organic compounds.1-20 These compounds 
have demonstrated significant biological activities, making them attractive targets for the development of novel therapeutic 
agents and pesticides.One such application is in the control of agricultural pests, such as the cowpea aphid, Aphis craccivora 
Koch, a major pest affecting important legume crops worldwide.Oxoimidazolidines are a class of heterocyclic compounds 
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containing a five-membered ring with two non-adjacent nitrogen atoms, an oxygen atom, and a carbonyl group. These 
compounds have attracted considerable attention due to their broad spectrum of biological activities, including antiviral, 
antitubercular,and antifungal properties.21-22 
 
      In recent years, research has focused on developing novel synthetic strategies for the preparation of oxoimidazolidine 
derivatives and exploring their potential applications in drug discovery and development.23 Cyanoguanidines are organic 
compounds featuring a guanidine moiety with a cyano group attached to one of the nitrogen atoms. These compounds have 
been widely studied for their pharmacological properties, such as anti-inflammatory and antihypertensive activities.24-25 
Cyanoguanidines also serve as key intermediates in the synthesis of many bioactive compounds and have been utilized in 
the development of novel pesticides and herbicides.26 
 

      Plant insect diseases have posed serious risks to crops in the world and caused a severe loss throughout the world.27 The 
cowpea aphid, scientifically known as Aphis craccivora Koch, is a small insect that feeds on the sap of plants in the legume 
family, including cowpeas, soybeans, and alfalfa. This pest is known for its destructive impact on crops, as it can cause 
significant yield lossesby directly feeding on plant sap and transmitting plant viruses and reduce the quality of the affected 
plants.28-29 The cowpea aphid is found in many parts of the world, and is considered a major agricultural pest in many 
regions.Despite its small size, this insect can reproduce rapidly and infest crops in large numbers, making it a significant 
threat to food security and agricultural sustainability.Understanding the biology, behavior, and ecology of the cowpea aphid 
is essential for developing effective strategies to manage this pest and minimize its impact on crop production. Current 
management strategies for A. craccivora include the use of synthetic insecticides and biological control agents. However, 
issues such as resistance development and environmental concerns have necessitated the search for new bioactive 
compounds acting as possible insecticides.Given the potential biological activities of oxoimidazolidine and cyanoguanidine 
compounds, further research exploring their prospective as new agents for the control of Aphis craccivora Koch is 
performed here in this work. 

2. Results and Discussion 
 
2.1 Chemistry  
 
     Herein, the desired compounds (3a, 3b, 3c, 3d, 3e, 3f and 3g) have been prepared in pure state according to literature 
procedure,17 via the reaction of cyanoguanidine (1) with different reagents, namely, 2,2-dihydroxy-1-phenylethan-1-one 
(2a); 1-(4-chlorophenyl)-2,2-dihydroxyethan-1-one (2b); 2,2-dihydroxy-1-(4-methylphenyl)ethan-1-one (2c); 2,2-
dihydroxy-1-(3-methoxyphenyl)ethan-1-one (2d); 2,2-dihydroxy-1-(4-methoxyphenyl)ethan-1-one (2e); 2,2-dihydroxy-1-
(naphthalen-1-yl)ethan-1-one (2f); 2,2-dihydroxy-1-(naphthalen-2-yl)ethan-1-one (2g), respectively, in ethanol in presence 
of  sodium ethoxide as the best basic catalyst, which was successfully chosen by studying the optimizing various reaction 
parameters such as: the basic catalyst used, the reaction temperature the suitable solvent, and the cyanoguanidine equivalent 
amount (Fig. 1).17 
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Fig. 1. Synthesis of compounds (3a, 3b, 3c, 3d, 3e, 3f, 3g). 
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      Whereas, cyanoguanidine compounds 4a and 4b can be obtained in good yield (55%) according to literature procedure,17 
when refluxing of the cyanoguanidine (1) with Arylglyoxals, namely, 2,2-dihydroxy-1-phenylethan-1-one (2a) and 1-(4-
chlorophenyl)-2,2-dihydroxyethan-1-one (2b) in presence of triethylamine as basic catalyst in methanol. The target products 
4a and 4b insoluble in hot ethanol thus, it can be separated via crystallization of the precipitate form ethanol, which was 
contaminated with soluble imidazolidines 3a and 3b (in low yield 29%) (Fig. 2). 
 
 

 
Fig. 2. Synthesis of compounds (4a and 4b). 

 
 
     The chemical structures of the synthesized compounds 3a-g, 4a and 4b were confirmed by their spectralanalyses,17 the 
IR spectrum of 4b given as an example showed absorption bands at 3156 and 3169 cm-1 corresponding to two NH groups, 
3043 due to CH aromatic 2211 cm-1 for cyano group, 1689 cm-1 given to carbonyl group and 1632 for C=N group. Its1H 
NMR spectrum showed the presence of two singlets at δ10.62 and 12.54 ppm characteristic for two NH protons, and five 
multiplet signals at δ7.38-7.45 ppm due to the para-phenylene and CH olefinic protons. Its 13C NMR spectrum exhibited 
five signals at δ72.54, 128.09, 130.01, 130.26 and 134.92 ppm given to aromatic and olefinic carbons, while carbons of 
cyano, imino and carbonyl groups are characterized by signals at δ 114.88,  160.56 and 171.62 ppm, respectively. 

2.2 Toxicological efficacy 
 

    All the title compounds have been screened for toxicological efficacy as described below: 

2.2.1. Toxicological activity test for the cowpea aphid adults  
 

       The toxicological efficacy of a series of compounds (3a, 3b, 3c, 3d, 3e, 3f, 3g 4a, and 4b) was assessed against the 
adults of cowpea aphids, and the results are presented in Table 1 and Fig. 3. Following a 24-hour exposure, the tested 
compounds exhibited varying degrees of biological activity as potential insecticides against the aphids, with LC50 values 
spanning 1.72 to 72.51 ppm. From the LC50 values, it is notable to mention that compound (3b) was found to have the 
highest insecticidal activity against adults of cowpea aphid, Aphis craccivora Koch, with an LC50 value of 1.72 ppm. In 
contrast, compound (4a) had the lowest insecticidal activity, with an LC50 value of 72.51 ppm. Compounds (3a, 3c, 3d, 3e, 
3f, 3g, and 4b) exhibited moderate to good toxicological activity against adults of cowpea aphid and their LC50 values were 
26.97, 19.17, 10.58, 5.17, 42.52, 29.65, and 2.55 ppm, respectively. 

2.2.2 Insecticidal activity test for the cowpea aphid nymphs  
 

       The toxicological efficacy of compounds (3a, 3b, 3c, 3d, 3e, 3f, 3g 4a, and 4b) against the nymphs of collected aphids 
was evaluated and the results are presented in Table 1 and Fig. 3. The study revealed that the aforementioned compounds 
exhibited varying degrees of toxicity, with LC50 values ranging from 0.02 to 18.02 ppm after 24 hours. Compound (3b) was 
found to be the most effective in terms of toxicological activity against cowpea aphid nymphs, with LC50 value of 0.02 ppm, 
while compound (4a) exhibited the lowest insecticidal activity against nymphs of cowpea aphid, Aphis craccivora Koch, 
with LC50 value of 18.02 ppm. The remaining compounds (3a, 3c, 3d, 3e, 3f, 3g, and 4b) demonstrated moderate to high 
toxicological activity, with LC50 values of2.98, 3.90, 1.63, 0.93, 15.83, 5.24, and 0.06 ppm, respectively. So, these results 
provide valuable insights into the potential of these compounds as insecticides against cowpea aphids. 
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Table 1. Toxicological activity of compounds (3a, 3b, 3c, 3d, 3e, 3f, 3g 4a, and 4b) against the adults and nymphs of 
cowpea aphid, A. craccivora, after 24 hr of treatments. 

Adults of cowpea aphid Nymphs of cowpea aphid 
Comp. Slope ± SE LC50 (ppm) Toxic ratio Slope ± SE LC50 (ppm) Toxic ratio 

3a 0.0559±0.5232 26.97 0.064 0.1696±0.4200 2.98 0.007 
3b 0.9783±0.6779 1.72 1 0.3616±0.6504 0.02 1 
3c 0.4498±0.7376 19.17 0.089 0.4722±0.5232 3.90 0.005 
3d 0.1874±0.6307 10.58 0.163 0.6265±0.5901 1.63 0.012 
3e 0.6235±0.9815 5.17 0.333 0.4652±0.8774 0.93 0.022 
3f 0.8904±0.7795 42.52 0.040 0.5383±0.5164 15.83 0.001  
3g 0.9593±0.4875 29.65 0.058 0.9905±0.4390 5.24 0.003 
4a  0.6021±0.5720 72.51 0.024 0.4932±0.4654 18.02 0.001 
4b 0.2438±0.8418 2.55  0.675 0.4624±0.5027  0.06 0.333 

Notes: Toxic ratio is calculated as the LC50 value of compound (3b) for baseline toxicity / the compounds’ LC50 value. 

 

 

Fig. 3. Toxicological activity of compounds (3a, 3b, 3c, 3d, 3e, 3f, 3g 4a, and 4b) against the adults and nymphs of 
cowpea aphid, A. craccivora, after 24 h of treatment. 

3. Structure-Action Relationships 
 

      In this study, the structure-activity relationships (SAR) were reported based on the toxicity values presented in Table 1 
and Fig. 3. Among the synthesized compounds, the compound [5-(4-chlorophenyl)-4-oxoimidazolidin-2-
ylidene]cyanamide (3b) was found to exhibit superior activity against cowpea aphid, potentially attributed to the presence 
of fluorophenyl and imidazole moieties in its structure. These structural features may have contributed to its heightened 
efficacy, as compared to the other compounds studied. Also, the high activity associated with compounds (3e) and (4b) may 
be due to the presence of the p-methoxyphenyl and chlorophenyl moieties, respectively in their structures. The toxicity 
analysis revealed that compound (3d) exhibited greater toxicity than compounds (3c) and (3g), possibly due to the presence 
of a methoxyphenyl moiety in (3d) and its absence in (3c) and (3g). This structural disparity may have contributed to the 
observed differences in insecticidal activity among the compounds. The presence of imidazole moiety may reflect better 
activity than the compounds containing other groups and this is shown in compounds (3a,b) and (4a,b).  

4. Materials and methods 
 
4.1. Instrumentation and Chemicals 
    
    All commercially available reagents were purchased from Merck, Aldrich and Fluka and were used without further 
purification. Melting points were detected with a Kofler melting points apparatus and uncorrected. Infrared spectra were 
recorded with a FT-IR-ALPHBROKER-Platinum-ATR spectrometer and are given as cm-1 using the attenuated total 
reflection (ATR) method. 1H NMR and 13C NMR spectra for all the prepared compounds were recorded in DMSO-d6 on a 
Bruker Bio Spin AG spectrometer at 400 MHz and 100 MHz, respectively. For 1H-NMR, chemical shifts (δ) were given in 
parts per million (ppm) with reference to tetramethylsilane (TMS) as an internal standard (δ=0); coupling constants (J) were 
given in hertz (Hz) and data are reported as follows: chemical shift, integration, multiplicity (s= singlet, d= doublet, m= 
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multiplet). For 1 3 C-NMR, TMS (δ=0) or DMSO (δ=39.51) was used as internal standard and spectra were obtained with 
complete proton decoupling.  
 
     Compounds (3a-g, 4a, and 4b) were obtained according to the literature procedure.17 The batches of cowpea aphid, A. 
craccivora insects were gathered from faba bean, Vicia faba L., fields of agricultural research center, Sohag branch. Toxicity 
of the ten target compounds was screened against the collected aphids.  
 
4.2.General procedure for the synthesis of 2-cyanoiminoimidazolidines (3a-g): 
 
     A mixture of the selected reagents (2a-g) (3 mmol) and cyanoguanidine (0.63 g, 7.5 mmol) in 30 mL sodium ethoxide 
(0.14 g sodium metal in 30 mL ethanol) was refluxed for 1.5 hrs. After completion of the reaction (monitored with TLC), 
the reaction mixture was cooled to room temperature, poured into ice-cold distilled water and neutralized to pH ~ 4 with 
dilute hydrochloric acid. The formed precipitate was collected, filtered, washed several times with distilled water, dried and 
recrystallized from ethanol. 
 

4.2.1. [5-(4-Chlorophenyl)-4-oxoimidazolidin-2-ylidene]cyanamide(3b): 

 

 

     Yield 82%;white solid; m.p.: 232-234°C. IR (ATR) �max3128 (N-H), 3068 (C-H aromatic), 2930, 2793(C-H aliphatic), 
2199 (C≡N), 1771 (C=O), 1646 (C=N) cm-1. 1HNMR(400MHz,DMSO-d6)δ5.42 (s, 1H, CHimidazolidine), 7.37, 7.39 (d, J = 8.4 
Hz,2H, CHarom.), 7.48, 7.50 (d, J = 8.4 Hz, 2H, CHarom.), 10.00 (s, 1H, NH), 11.95 (br. s, 1H, NH); 13C NMR (100 MHz, 
DMSO-d6) δ62.4, 115.8 (C≡N), 129.2, 129.3, 133.8, 133.9, 162.9, 174.0 (C=O).  

4.3. General procedure for the synthesis of cyanoguanidine (4a and 4b): 
 
     A mixture of the selected reagents (2a and 2b) (3 mmol), cyanoguanidine (0.63 g, 7.5 mmol) in 30 mL methanol and 
TEA (0.6 g, 6 mmol) was refluxed for 2 hrs. After completion of the reaction (monitored with TLC), the reaction mixture 
was concentrated, cooled to room temperature and the formed precipitate was collected, filtered, washed with dilute 
hydrochloric acid, washed several times with distilled water, dried and recrystallized from ethanol to give the insoluble 
target products 4a and 4bbeside the solubleimidazolidines3a and 3b. 
 

4.3.1. 1-Cyano-3-(2-oxo-2-phenylethylidene)guanidine(4a): 

 

      Yield 55%;white solid; m.p.: >300°C. IR (ATR) �max3162, 3186(2N-H), 3053(C-H aromatic, 2204(C≡N), 1696(C=O), 
1627(C=N) cm-1.1HNMR(400MHz,DMSO-d6)δ7.34-748(m,5H, CHarom.), 7.72 (s, 1H, CH), 10.59(s, 1H, NH), 12.39(br. s, 
1H, NH). 
 

4.3.2. 1-[2-(4-Chlorophenyl)-2-oxoethylidene]-3-cyanoguanidine(4b): 
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      Yield 55%;white solid; m.p.: >300°C. IR (ATR) �max3156, 3169 (2N-H), 3043 (C-H aromatic, 2211 (C≡N), 1689 
(C=O), 1632 (C=N) cm-1.1HNMR(400MHz,DMSO-d6)δ7.38-7.45 (m,5H, CHarom.), 10.62 (s, 1H, NH), 12.54 (br. s, 1H, 
NH); 13C NMR (100 MHz, DMSO-d6) δ72.54, 114.88 (C≡N), 128.09, 130.01, 130.26, 134.92, 160.56 (C=NH), 171.62 
(C=O). 

4.3. Laboratory bioassay 
 

     The study evaluated the toxicity of the title compounds using leaf dip bioassay method.30 The laboratory screening results 
are presented here, revealing the concentrations of the target compounds required to kill 50% (LC50) of cowpea aphids. For 
each prepared compound, 6 different solution concentrations were created, each containing 0.1% Triton X-100 as a 
surfactant. Insects, consisting of 20 nymphs and 20 adults of similar size, were dipped into each concentration of the solution 
three times for duration of ten seconds. After treatment, the cowpea aphids were allowed to air dry for approximately half 
an hour at room temperature. Control groups of untreated aphids were also included in the experiment. Once the treated 
insects had dried, they were transferred to Petri dishes with a diameter of 9 centimeters and left for 24 hours in an 
environment with a temperature of 22 ± 2 °C, relative humidity of 60 ± 5%, and a 12-hour light/dark photoperiod. After 24 
hours, the aphid mortality rate was examined using a binocular microscope. Any aphids that were unable to move forward 
in a coordinated manner were considered deceased. Each compound underwent two rounds of toxicological activity testing, 
and the resulting data was adjusted using Abbott's formula.31 The computerized Probit regression analysis program was 
used to calculate the median lethal concentrations (LC50) and slope values for each of the synthesized compounds, which 
were then expressed in parts per million (ppm).32 This work adds to the existing body of scientific knowledge that supports 
the use of heterocyclic compounds as important bioactive agents in different fields and this is shown by a lot of scientific 
papers reported before.33-79 

5. Conclusion 
 

      Nine heterocyclic compounds of oxoimidazolidine and cyanoguanidine compounds (3a, 3b, 3c, 3d, 3e, 3f, 3g 4a, and 
4b), namely, (4-oxo-5-phenylimidazolidin-2-ylidene)cyanamide (3a), [5-(4-chlorophenyl)-4-oxoimidazolidin-2-
ylidene]cyanamide (3b), [5-(4-methylphenyl)-4-oxoimidazolidin-2-ylidene]cyanamide (3c), [5-(3-methoxyphenyl)-4-
oxoimidazolidin-2-ylidene]cyanamide (3d), [5-(4-methoxyphenyl)-4-oxoimidazolidin-2-ylidene]cyanamide (3e), [5-(1-
naphthyl)-4-oxoimidazolidin-2-ylidene]cyanamide (3f), [5-(2-naphthyl)-4-oxoimidazolidin-2-ylidene]cyanamide (3g), 1-
cyano-3-(2-oxo-2-phenylethylidene)guanidine (4a), 1-[2-(4-chlorophenyl)-2-oxoethylidene]-3-cyanoguanidine (4b) have 
been prepared in pure state according to literature procedure,17 by reaction of cyanoguanidine (1) with different reagents 
and under different conditions. After that, these compounds were tested for their biological activity as promising insecticides 
against the adults and nymphs of cowpea Aphid, Aphis craccivora Koch. The findings of this study revealed that certain 
synthesized compounds, such as (3b), (3e), and (3a), exhibited substantial toxicological activity, with respective LC50 values 
of 1.72, 5.17, and 2.55 ppm, respectively. Among the synthesized compounds, (3b) demonstrated the highest toxicity against 
both adults and nymphs of cowpea aphids, while compound (4a) exhibited the lowest toxicity against the same insects. The 
inclusion of various functional groups in the structure of the compounds resulted in a wide range of toxicological activities, 
as evidenced by the diverse LC50 values obtained from the insecticidal activity test of the prepared compounds. 
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