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 In this communication, condensation from different aromatic, aliphatic and heteroaromatic 
aldehydes, hydroxyl amine, and sodium azide in toluene reflux was used to produce 
electronically and structurally distinct tetrazoles with a range of yields 5-94%. Zn(OAc)2•2H2O 
(10 mol%) was used as a catalyst in the synthesis, which was eco-friendly, readily available, and 
affordable. The IR, NMR, and mass spectral studies were utilized in order to carry out a 
comprehensive characterization for all the 5-aryl tetrazole derivatives. This approach contributes 
to the current chemical synthesis of 5-substituted-1H-tetrazoles in an appealing and convenient 
manner thanks to its quick reaction times, good to exceptional yields, safe process, and 
straightforward workup.  
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1. Introduction  
 

     
     Since they perform many reactions in a single reaction step, multi-component reactions (MCRs) offer a tremendous 
potential for creating a variety of tiny bioactive frameworks with exceptional structural/atom economy. In addition, they 
are considered helpful tools for the creation of heterocyclic motifs that are active in biological and pharmacological 
processes.1-3 Heterocyclic compounds make up the biggest diversity of chemical compounds and have a significant impact 
on industry. As a result, they are regarded as some of the most essential organic molecules.4-8 
 

     Tetrazoles, which are among the most significant synthetic heterocyclic compounds, have a wide range of applications 
across a variety of scientific disciplines, particularly in the fields of chemistry, materials science, and the medical sciences.9-

11 Tetrazoles have been shown to have higher lipophilicity than their comparable isosters (carboxylic acids), which increase 
their capacity to penetrate cells and increase their in vivo half-life and bioavailability. This is due to the fact that tetrazoles 
also have good metabolic stability. Tetrazoles have been shown to have significant pharmacological and biological effects, 
including anticancer, antiviral, and anti-HIV activity, as well as anti-inflammatory, antifungal, and antibacterial capabilities 
(Fig. 1).12-15 
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Fig. 1. Drugs containing 5-substituted 1H-tetrazole  moiety commercially available. 

      The 5-substituted 1H-tetrazoles are the most fascinating heterocycles among the tetrazoles, and several different 
synthetic strategies have been established to construct such an important functionality. The fundamental step in the synthesis 
of 5-substituted 1H-tetrazole derivatives is the [2+3] cycloaddition of various nitriles with NaN3 or TMSN3 in polar aprotic 
solvents. It has been discovered that one can make tetrazoles by synthesizing them from nitriles, amides, thioamides, 
imidoyl chlorides, halides, ketones, amines, alkenes, or isocyanides using a variety of different methodologies. For this 
particular kind of reaction, a wide variety of catalysts have been tried and tested, including Bronsted or Lewis acids like 
ZnBr2, Fe(OAc)2, FeCl3-SiO2, CdCl2, B(C6H5)3, cyanuric chloride, CAN, TABF, Ln(OTf)3-SiO2, NaHSO4-SiO2, InCl3, 
polymeric catalyst, ionic liquids, metal oxide nanoparticles, etc.16-26 Low yields, creation of unwanted byproducts, exposure 
to dangerous or explosive chemicals, and high temperatures are common problems associated with the majority of these 
processes. Aluminum azide, tin azide, or silicon azide were typically used as the source of azide; however, each of these 
has a number of obvious disadvantages, including the fact that they are toxic organometallic reactants, that they are difficult 
to remove metal residuals, and that they are expensive substances. The discovery of Sharpless' click chemistry, which uses 
ZnBr2 and sodium azide as a nitrogen source, represented a significant step forward in the process of synthesis for 5-
substituted 1H-tetrazoles.22 
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      The practical use of aldehydes for the preparation of target compounds would be very appealing due to their 
accessibility, diversity, lack of toxicity, and ease of handling.27-35 In the past, the compounds that are based on zinc have 
been exploited in a wide variety of various catalytic processes.36 After doing a meticulous search of all of the pertinent 
published information, we arrived to the conclusion that the relevant reaction has not involved Zn(OAc)2•2H2O. Other zinc 
catalysts such as ZnBr2, ZnO, ZnCl2, mesoporous ZnS nanospheres, and zinc hydrotalcite were utilized for the purpose; 
however, their application was limited to the [2+3] cycloaddition of a variety of nitriles with sodium azide (NaN3).22, 37-40 
Under the conditions that are typically found in laboratories, zinc acetate is not only affordable but also simple to acquire 
and resistant to change in the presence of moisture and air.41-58 Enthaler and his group observed that in the presence of zinc 
acetate, aldehydes and hydroxyl amines react together to get corresponding aldoximes in the presence of toluene with a 
negligible synthesis of corresponding nitriles.59 In light of our prior knowledge and experience with zinc catalysis,19, 43-46 a 
thorough search of the relevant literature, and the outcomes of control experiments, we decided to carry out the reactions 
necessary to synthesize 5-substituted tetrazoles by one-pot condensation from aldehydes, hydroxyl amine, and sodium azide 
using Zn(OAc)2•2H2O as a catalyst. 

2. Results and Discussion 

     As a model reaction, benzaldehyde (1 mmol) reacted with hydroxylamine hydrochloride (1.2 mmol) and sodium azide 
(1 mmol) under reflux conditions and tested in different solvents using Zn(OAc)2•2H2O (20 mol%) as catalyst (Scheme 1). 
According to the findings in Table 1, the kind of solvent has an indisputable function in determining how far the reaction 
gets. In this regard, the model reaction was carried out under clean conditions at room temperature. Despite the fact that the 
reaction period was increased all the way up to 48 hr, no product production was observed (Table 1, entry 1). When 
determining whether or not a chemical reaction is possible, one important consideration is the temperature at which the 
reaction takes place. It is crucial in the context of one-pot MCR reactions given that excessively high temperatures 
frequently cause the development of a variety of undesirable byproducts. 

solvent, reflux

N
NN

HN
CHO

+ +  NaN3NH2OH

12-18 h

Zn(OAc)2.2H2O

 

Scheme 1. Zn(OAc)2•2H2O-Catalyzed synthesis of 5-phenyl-1H-tetrazole. 

      As it can be seen in Table 1, the use of toluene at reflux temperature produced the best results out of all of the other 
solvents that were tested for this study. As a result, this method was chosen for all of the subsequent reactions (Table 1, 
entry 3). THF was utilized in the reaction, which resulted in a moderate yield of 5-phenyl-1H-tetrazole (Table 1, entry 2). 
Even when the reactions were allowed to take longer, it was discovered that other solvents such as CH3CN, EtOAc, DMF, 
acetone, and CHCl3 were inappropriate (Table 1, entries 4-8). 

Table 1. Effect of solvent 
Entry Solvent Time (h) Reaction 

condition 
Yield (%)a 

1 Neat 48   RT 0 
2 THF 18  reflux 48 
3 toluene  12  reflux 94 
4 acetone 18  reflux 17 
5 CHCl3 18  reflux 22 
6 DMF 18  reflux 32b 
7 CH3CN 18  reflux 12 
8 EtOAc 18  reflux 8 

    aIsoalted yields; bComplex reaction mixture; cZn(OAc)2•2H2O loading: (95%, 20 mol%); (94%, 10 mol%) and (28%, 5 mol%)  

      Disappearance of aldehydic proton (δ 10.01) in 1H NMR, δ 192.38 in 13C NMR and ν 1710 cm-1 based on IR studies 
(aliquots taken in regular intervals) and appearance of  broad peak of 3449 cm-1 (NH), 1562 (C=N), 1164 (C-N) peaks in 
IR proved to be the formation of desired tetrazole product in initial screening. Peak value of δ 155.33 (NH-C-C=N) in 13C 
NMR further confirmed the formation of tetrazole. In addition, melting point of the synthesized tetrazole (214-216 0C) 
derived from benzaldehyde (model reaction) matched with the reported data31.  

      Another significant component in the current procedure that must be considered in order to obtain 5-substituted 1H-
tetrazole derivatives is the catalyst loading. When the model reaction was carried out without the presence of a catalyst, 
there was no increase in the yield of 5-phenyl-1H-tetrazole. In addition, it was discovered that a catalyst concentration of 
10 mol% was adequate to keep the reaction going and produce a maximum isolated yield of 94%. Because of this, it was 
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decided that a 10 mol% concentration of Zn(OAc)2•2H2O would be used in each of the succeeding processes. The following 
step was to analyze the effectiveness of the control reaction using a number of different zinc salts that were available (Table 
2). The use of alternative zinc catalysts also resulted in the production of 5-phenyl-1H-tetrazole in yields that were either 
nil, very low, or moderate; however, the reaction durations needed to be lengthened (Table 2, entries 1-5). Therefore, the 
following reaction conditions have been determined to be optimal for the newly discovered method: Zn(OAc)2•2H2O (10 
mol%) in toluene with a reflux (Table 2, entry 6). 

Table 2. Effect of zinc salts 
Entryb Zinc salt Reaction Time (h) Yielda   (%) 

1 Zinc granules (crystalline)  20 - 
2 Zn(NO3)2  48 11 
3 ZnCl2 12 48 
4 ZnSO4 48 07 
5 Zn3(PO4)2 48 15 
6 Zn(OAc)2•2H2O 12 94 

  aIsolated yields. breactions performed in toluene reflux for the specified time 

      In order to evaluate the effectiveness of this MCR, a number of 5-substituted-1H-tetrazoles were prepared by reacting 
a variety of aromatic, heteroaromatic and aliphatic aldehydes with sodium azide and hydroxyl amine under the optimized 
conditions. The results of this evaluation will be presented in the following excerpts (Table 3). It was revealed that the 
electron-donating groups and the electron-drawing groups that are present in aromatic aldehydes were able to interact with 
one another without any difficulty whatsoever (Table 3, entries 2-9). It was noteworthy to observe that the reaction involving 
heteroaromatic aldehydes, resulted in the creation of corresponding tetrazoles in high yields (Table 3, entries 10-11). 
Cinnamaldehyde, which is α,β-unsaturated compound, likewise responded favourably for the creation of the corresponding 
tetrazole (Table 3, entry 12). Alkyl aldehyde, such as acetaldehyde, was also put through the reaction, which led to the 
creation of the corresponding compounds in virtually insignificant amounts (Table 3, entry 13). IR, NMR, and mass 
spectrometry analyses were used to adequately characterize all of the known compounds, and these analyses revealed that 
the melting points of these compounds were in agreement with the data that was obtained in the published research. 

Table 3. Zn(OAc)2•2H2O-Catalyzed synthesis of 5-substituted 1H-tetrazoles 

Entry 
 Product Time 

  (h) 
Yielda 

(%) 

1 

N N

N
H
N

 

12 94 

2 

N N

N
H
N

H3C
 

12 89 

3 

N N

N
H
N

H3CO
 

12 92 

4 

N N

N
H
N

Br
 

12 85 

5 

N N

N
H
N

NO2

 

18 78 

6 

N N

N
H
N

O2N
 

12 81 

7 

N N

N
H
N

Cl
 

12 80 



K. B. Digambar et al.   / Current Chemistry Letters 12 (2023) 513

8 

N N

N
H
N

HO
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24 5 

aIsolated yields after column chromatography 

      There are excellent works reported on [3+2] cycloaddition reaction with the participation of azide moiety59-60. It should 
be noted that several mechanisms, such as polar or non-polar, might be possible for the transformation of azide to tetrazole 
61-63. Nitrile formation does not occur in the present work because of the azide ion's nucleophilic attack on the electron-
deficient carbon atom64. Rather, cycloaddition occurs to create tetrazole. The activation of the C=N bond in this case is due 
to Zn(OAc)2•2H2O. By coordinating with the oxygen atom in the oxime, it does this. This might facilitate the [3+2] 
cycloaddition of NaN3 over the C=N bond, leading to the formation of the substance known as 5-substituted 1H-tetrazole 
through the combination of acid hydrolysis and NaN3 (Scheme 2). 

CHO
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CH N-OH CH N-O
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N
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HN
+ Zn(OAc)2

 

Scheme 2. Plausible mechanism for Zn(OAc)2•2H2O-catalyzed 5-aryl-1H-tetrazole formation. 

3. Conclusions 

      In conclusion, we have developed a novel method that is eco-friendly and atom inexpensive for the synthesis of 5-
substituted 1H-tetrazoles in the presence of Zn(OAc)2•2H2O as an effective catalyst. The addition of aldehyde and hydroxyl 
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amine as replacements for potentially hazardous nitrile precursors is the protocol's crowning achievement. The benefits of 
using this method include increased yields, a straightforward working-up approach, a catalyst that is not only readily 
available but also less expensive. 

4. Experimental 
 

      For details, please see Supporting Information available.  

      This work confirms that heterocyclic compounds are very important in different fields due to the high variety of their 
applications.65-72 
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