
* Corresponding author. Phone: (+1) 920 442 7858 
E-mail address: farrokh5@uwm.edu   (H. Farrokhi-Asl)   
 
 
© 2024 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ac.2023.12.001 
 
 

 
 

 
 

Accounting 10 (2024) 67–88 
 

 

Contents lists available at GrowingScience 
 

Accounting  
 

homepage: www.GrowingScience.com/ac/ac.html 
 
 
 

 
 
 
 
Using artificial intelligence techniques and econometrics model for crypto-price prediction   

 
Milad Shahvaroughi Farahania and Hamed Farrokhi-Aslb* 
 

 

aDepartment of Finance, Faculty of Management, Khatam, University, Tehran, Iran 
bSheldon B. Lubar College of Business, University of Wisconsin-Milwaukee, Milwaukee, WI, United States 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received August 2, 2023 
Received in revised format 
September 21 2023 
Accepted December 3 2023 
Available online  
December 3 2023 

 In today's financial landscape, individuals face challenges when it comes to determining the 
most effective investment strategies. Cryptocurrencies have emerged as a recent and enticing 
option for investment. This paper focuses on forecasting the price of Ethereum using two 
distinct methods: artificial intelligence (AI)-based methods like Genetic Algorithms (GA), and 
econometric models such as regression analysis and time series models. The study incorporates 
economic indicators such as Crude Oil Prices and the Federal Funds Effective Rate, as well as 
global indices like the Dow Jones Industrial Average and Standard and Poor's 500, as input 
variables for prediction. To achieve accurate predictions for Ethereum's price one day ahead, 
we develop a hybrid algorithm combining Genetic Algorithms (GA) and Artificial Neural 
Networks (ANN). Furthermore, regression analysis serves as an additional prediction tool. 
Additionally, we employ the Autoregressive Moving Average (ARMA) model to assess the 
relationships between variables (dependent and independent variables). To evaluate the 
performance of our chosen methods, we utilize daily historical data encompassing economic 
and global indices from the beginning of 2019 until the end of 2021. The results demonstrate 
the superiority of AI-based approaches over econometric methods in terms of predictability, as 
evidenced by lower loss functions and increased accuracy. Moreover, our findings suggest that 
the AI approach enhances computational speed while maintaining accuracy and minimizing 
errors. 
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1. Introduction 

 
The rising popularity of cryptocurrencies has garnered significant interest from individuals worldwide. One crucial factor 
contributing to the increasing attractiveness of the cryptocurrency market is its improved market capitalization. Market 
capitalization (market cap) refers to the total value of all mined coins and can be calculated by multiplying the number of 
total coins by the current market price. Statistics and evidence indicate a substantial surge in cryptocurrency market cap, 
growing from approximately 1.5 billion dollars in April 2013 to 1.5 trillion dollars in February 2022 (Coinmarketcap.com). 
For instance, developing countries in Africa, such as Nigeria and Kenya, exhibit a notable inclination to invest in 
cryptocurrencies. These countries rank second and eighth globally in terms of BTC volume, with 60,215 and 8,895 
respectively. The increasing global acceptance of cryptocurrencies has spurred extensive research in this field. 
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In Iran, cryptocurrencies have gained a significant user base and advocates who utilize them for various purchases, including 
automobiles and houses. A study conducted by the blockchain association reveals that daily transactions in this market in 
Iran amount to at least 10 million dollars. 

Various methods are available for forecasting cryptocurrency prices, including artificial intelligence (AI) based methods 
like machine learning (ML), econometric models such as linear regression or auto-regressive integrated moving average 
(ARIMA) analysis, and mathematical models like statistical, empirical, or simulation methods. One crucial aspect of 
accurate prediction and estimating prediction equations is the selection of appropriate input variables. Numerous economic 
and financial indicators can influence and impact cryptocurrency prices. By identifying and incorporating these indicators 
into the model, we can enhance its accuracy. In this paper, we employ economic and financial indicators as input variables. 
To gauge the predictive power of our model, we compare its performance with other models, particularly econometric 
models. Unlike AI-based models, econometric models often make more assumptions regarding various conditions such as 
stationarity and linearity. Consequently, econometric models offer greater control over the final solution by considering 
different parameters and assumptions.  

At the end, there are some questions which can be answered by this study: 

• What is the level of accuracy in predicting the price of Ethereum? 

• Do AI-based methods demonstrate high accuracy in predicting prices within the cryptocurrency market? 

• To what extent do genetic algorithms contribute to identifying the most significant and appropriate variables? 

• Which models exhibit greater predictive power? 

2. Introduction 

Cryptocurrency is a digital asset that utilizes cryptography technology and operates without centralized control. The origins 
of cryptocurrencies can be traced back to the 1980s, but it was in 2009 that Bitcoin emerged as the first decentralized 
cryptocurrency (Chang et al., 2022). Bitcoin is often hailed as a groundbreaking revolution of the modern era due to its 
transformative impact on traditional trading systems and the elimination of intermediaries. This has resulted in reduced 
transaction costs and decreased dependence on traditional banking systems. 

The trading of cryptocurrencies involves a unique process that encompasses several steps and actions when buying and 
selling. One of the distinguishing features of cryptocurrencies like Bitcoin (BTC) and Ethereum (ETH) is their utilization 
of blockchain technology, which offers secure recording and transfer of information. 

Blockchain, characterized by its distributed public ledger, serves as the underlying framework for cryptocurrencies. It 
facilitates all activities and transactions within the cryptocurrency ecosystem, enabling currency holders to update records 
and engage in transactions (Bai & Vahedian, 2023). Mining is a process employed to create new units of cryptocurrency. 
This involves solving complex mathematical problems using powerful computers (Xu and Zhang, 2023). Alternatively, 
individuals can purchase cryptocurrencies from brokers and store them in digital wallets for future use. This market poses 
several risks, including but not limited to cyber theft and hacks, unregulated trading platforms/exchanges, regional 
regulations, and currency conversion risks.  

A study conducted in the United States revealed that 63% of respondents working in the banking industry held a negative 
view of cryptocurrencies due to the associated risks discussed earlier. Ironically, banks themselves often contribute to high 
inflation by excessively issuing currency notes (Dapp, 2021). However, they can also play a role in strengthening the 
cryptocurrency market, as explained below. 

• Custody services: Banks can securely hold cryptocurrencies or digital wallets on behalf of individuals, providing 
easy access whenever needed. 

• Easy onboarding and expert assistance: Banks can act as trusted third parties, offering support to investors or clients 
who are new to or have limited knowledge about cryptocurrencies. They can provide services such as wallet 
recharging and guidance on choosing the right cryptocurrency passwords. 

• Regulatory oversight: Banks can establish regulations to swiftly identify any suspicious or illicit activities, expedite 
payment processes through the use of public blockchains, and potentially incorporate stable coins. 

By embracing these roles, banks have the potential to bridge the gap between traditional financial systems and the world of 
cryptocurrencies, promoting wider adoption and enhancing the overall security of digital assets. In summary, 
cryptocurrencies are not only a threat to banks but also present opportunities for them by facilitating cross-border financial 
communications. However, investing in cryptocurrencies entails both advantages and disadvantages. 
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The structure of the paper is as follows: Section 2 presents a review of relevant literature and the latest research papers in 
the field. Section 3 outlines the methodology adopted for making predictions. Computational results are presented in Section 
4. Finally, the last section offers concluding remarks and suggests future research directions. 

3. Literature review 

Metaheuristic algorithms are a methodology used to facilitate the search process in the solution space of optimization 
problems. These algorithms aim to explore a wide range of possibilities to find optimal or near-optimal solutions. They can 
be classified into different groups based on their characteristics, such as bio-stimulated algorithms, nature-inspired 
algorithms, physics-based algorithms, evolutionary algorithms, and swarm-based algorithms. Genetic algorithm (GA) is a 
widely used metaheuristic algorithm (Azadeh & Farrokhi-Asl, 2019). Within the field of forecasting, GA has been employed 
by numerous researchers, and its effectiveness has been demonstrated through numerical results (Zhang et al., 2022; Lai et 
al., 2022). Feature selection plays a crucial role in enhancing the robustness of the forecasting model by reducing the number 
of input variables (Abellana and Lao, 2023). In this study, we utilize GA as an efficient evolutionary algorithm for feature 
selection, aiming to identify the most important indicators in the forecasting process.  

Furthermore, cryptocurrency is a network-based digital asset that is distributed across numerous computers. Many digital 
currencies operate on decentralized networks built on Blockchain technology. Blockchain serves as a shared and unalterable 
ledger that facilitates the recording of transactions and tracking of assets in a business network. Ethereum, represented by 
the symbol ETH, is a decentralized and open-source blockchain platform that ranks second in terms of market capitalization, 
following Bitcoin. Similar to Bitcoin, individuals seek to predict the price of ETH using various models, including machine 
learning techniques (Kim et al., 2021), deep learning (Politis et al., 2021), and statistical models (Rathan et al., 2019), with 
the aim of making profitable investments. In this paper, we also employ different methods to forecast the price of ETH and 
compare the results obtained through these approaches. 

According to Antonakakis et al., (2019) and Fang et al. (2022), research papers in the field of cryptocurrency encompass 
various content structures, including (1) Introducing Cryptocurrency trading, (2) Surveys, and (3) Empirical analysis. 
Researchers have explored diverse topics such as the total market capitalization of the cryptocurrency market, 
cryptocurrency trading strategies, and trading tools utilizing econometric and mathematical models, as well as machine 
learning technology (Yuan and Wang, 2018). They have also investigated opportunities and challenges in the field (Al-
Amri et al., 2018). Atsalakis et al. (2019) proposed a hybrid technique called PATSOS, based on a neuro-fuzzy controller, 
for the prediction of daily bitcoin price changes. The results demonstrated the robustness and superiority of the PATSOS 
technique over simpler neuro-fuzzy and artificial neural network models. They also achieved higher returns using the buy 
and hold strategy based on PATSOS. Maleki, et al. (2020) applied machine learning algorithms such as Random Forest 
Regressor and Gradient Boosting Regressor, along with time series models like AutoRegressive (AR), Moving Average 
(MA), and AutoRegressive Integrated Moving Average (ARIMA), to forecast bitcoin prices using three other well-known 
coins: Ethereum, Litecoin, and Zcash. The results revealed that among the three cryptocurrencies considered, Zcash had the 
best performance in forecasting Bitcoin's price. More recently, Hamayel and Owda (2021) proposed three types of Recurrent 
Neural Network (RNN) models: Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Bidirectional 
LSTM (bi-LSTM) models for predicting the prices of Bitcoin, Litecoin, and Ethereum. Based on Mean Absolute Percentage 
Error (MAPE), GRU demonstrated the most accurate and acceptable predictions. Finally, Koki et al. (2022) employed 
Hidden Markov Models to forecast the returns of Bitcoin, Ether, and Ripple. They also examined the impact of various 
specific predictors, including financial and economic factors, on the cryptocurrency return series. Their findings indicated 
that the Non-Homogeneous Hidden Markov (NHHM) model with four states outperformed all other considered models for 
all three series.  

4. Methodology  

Several economic indicators like the 10-Year Breakeven Inflation Rate and the 12-Month London Interbank Offered Rate, 
are utilized as input variables. Additionally, stock market indicators such as the S&P 500 and FTSE 100 are incorporated 
as input variables. These input variables are summarized in Table 3. To predict the price of ETH, we employ a combination 
of AI and econometric methods. We utilize econometric models like ARIMA as a prediction model. Subsequently, we 
compare the results. In this analysis, the price of ETH serves as the dependent variable, while the other variables are treated 
as independent variables. Figure 1 illustrates the research methodology. We gather daily data spanning from the beginning 
of 2019 to the end of 2021, encompassing three years of historical data. The Federal Reserve Economic Data and Yahoo 
Finance databases are the primary sources from which we access and adopt the necessary data. We take into account several 
factors when choosing these indicators: 

• Indicators that share similar mechanisms and behaviors with ETH, such as Bitcoin price and Litecoin price. 

• Key economic indicators that have an impact on ETH price, such as crude oil price and the 10-Year Breakeven 
Inflation Rate. 

• Major global stock market indices like the S&P 500, Nasdaq, and FTSE 100. 
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• Financial indicators like the Federal Funds Effective Rate and the Secured Overnight Financing Rate. 

Table 3  
Main indicators as input variables 

Row Indicator Variable scale Symbols 

Nature 
(Input Variable 

Vs. Target 
Variable) 

1 Coinbase Bitcoin  U.S. Dollars CBBTCUSD IV 
2 Coinbase Litecoin U.S. Dollars CBLTCUSD IV 
3 Crude Oil Prices: Brent - Europe Dollars per Barrel DCOILBRENTEU IV 

4 U.S. Dollars to Euro Spot Exchange Rate U.S. Dollars to One 
Euro DEXUSEU IV 

5 Federal Funds Effective Rate Percent DFF IV 

6 Market Yield on U.S. Treasury Securities at 2-Year 
Constant Maturity Percent DGS2 

 IV 

7 Nominal Emerging Market Economies  U.S. Dollar Index, 
Index Jan 2006=100 DTWEXEMEGS IV 

8 Secured Overnight Financing Rate Percent SOFR IV 
9 10-Year Breakeven Inflation Rate Percent T10YIE IV 

10 12-Month London Interbank Offered Rate (LIBOR)  Based on U.S. 
Dollar, Percent USD12MD156N IV 

11 DAX Performance-Index - ^GDAXI IV 
12 KOSPI Composite Index - ^KS11 IV 
13 Nikkei 225 - ^N225 IV 
14 ^NIFTY50 - ^NSE IV 
15 Dow Jones Industrial Average - DJIA IV 
16 Financial Times Stock Exchange 100 Index - FTSE100 IV 
17 Standard and Poor's 500 - S&P500 IV 
18 Nasdaq Composite - Nasdaq IV 
19 SSE Composite Index - 000001.SS IV 
20 Singapore Stock Market - STI IV 
21 Ethereum price - ETH-USD TV 

 

 

 

 

 

 

 

 

 

Fig 1. Research Methodology 

 

5. Artificial Neural Network 

Artificial neural network (ANN) simulates human thinking and can be enhanced through training (Naseri et al., 2022; Kasaei 
and Rajendran, 2023). One of its key advantages is its compatibility with complex data structures, making it a suitable 
approach for analyzing ETH price, which exhibits high volatility. ANN consists of three main layers. The first layer is the 
input layer, where data is initially fed into the network. The volume of input data plays a crucial role in network performance. 
A smaller amount of input data results in faster and more accurate network computations. To achieve this, we employ 
Genetic Algorithm (GA) for feature selection, which helps identify the optimal and most relevant input variables. Data then 
flows from the input layer to the hidden layer. However, between these two layers, an activation function is utilized to 
determine linearity or non-linearity. In this study, the chosen activation function is the non-linear Tan-Sigmoid, which yields 
outputs ranging from -1 to 1. This function is employed to standardize numbers within the specified range. In this paper, a 
linear activation function is used to extract linear features. Finally, the obtained information is transferred to the output 
layer, where the target variable is located. 
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In conclusion, a multi-layer perceptron (MLP) with three layers is employed as the network structure. The number of hidden 
layers is determined through trial and error. This involves investigating different network structures and selecting the one 
that exhibits the lowest error and highest predictability. The error-backpropagation method is utilized for training the ANN. 
Additionally, the Levenberg-Marquardt (LM) algorithm is employed as an optimization algorithm to enhance the learning 
process of the model. The parameters of the ANN are presented in Table 4. 

Table 4  
Network properties  

Parameters Explanations 
Training Back-propagation (BP) 

Optimization algorithm Levenberg-Marquardt (LM) 
Training rate 0.01 

Iterations 1000 

Activation function Tan-Sigmoid 
Pure line 

 

It is crucial to normalize and scale the data prior to training the network. This can be achieved using Equation (1). In this 
equation, numerator  𝑖 shows the amount of data. The structure of the network has been represented in Figure 2 
(Shahvaroughi Farahani and Razavi, 2021). 

𝑆 𝑆 𝑆𝑆 𝑆 . 𝑖 1 … .𝑁 (1) 

where: 𝑆 : Normalized data 𝑆 : Each observation of each variable 𝑆 : Minimum value of each variable 𝑆 : Maximum value of each variable  

  

 

 

 

 

 

 

Fig 2. Architecture of the proposed Neural Network 

As previously mentioned, the input variables (𝑝) consist of weights (𝑊 ) and biases (𝑏 ). Within each layer, these values 
are summed (+) and then passed through a non-linear activation function. Subsequently, they are summed once again to 
create new weights (𝑊 ) and biases (𝑏 ), which are then passed through a linear activation function.  

6. Genetic Algorithm 

Genetic Algorithm (GA) is a global search-based optimization technique utilized to approximate optimal solutions (Katoch 
et al, 2021). GA begins with an initial set of solutions and iteratively improves this set, referred to as the solution population. 
The GA flowchart is provided in Figure 3.  In this paper, each solution is represented by a string of binary numbers (0s and 
1s) known as a chromosome. Therefore, we employ a binary solution representation using chromosomes consisting of 24 
bits. The first 19 bits represent the 19 independent variables, where 1 indicates the existence of an input variable, while 0 
denotes its absence. The remaining 5 bits (25=32) are used to determine the number of neurons in the hidden layers. GA 
also employs two main operators, mutation and crossover, to explore the solution space. In GA, the Roulette wheel method 
is employed to select individuals for the next generation. This selection process is determined by the fitness of each 
individual, meaning that individuals with higher fitness have a greater chance of being chosen for producing the next 

Input 

p 𝑊  

a1 𝑊  𝑛1
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generation. Typically, the crossover rate ranges from 0.8% to 0.95%. Additionally, new or diverse solutions can be obtained 
through mutation, which involves flipping certain digits in a string. The crossover and mutation processes are illustrated in 
Figure 4. GA parameters and their value are also shown in Table 5. For getting more information about the GA pseudo-
code (i.e., steps and how to get the parameters), interested readers can refer to Shahvaroughi Farahani and Razavi (2021). 

 

 

Fig. 3. Genetic algorithm process 

 
Fig. 3. Cross-over and mutation operator 

Table 5  
GA parameters 

Output 
Error 

Output 
Activation 
Function 

Input 
Activation 
Function 

Mutation 
Rate 

Crossover 
Rate 

Number of 
Generation Population size Max 

Iterations 

MSE Logistic Logistic 0.1 0.9 50 20 

1000 Selection parents Mutation Crossover 

Roulette wheel method Binary Method One-point method 
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7. Econometric models 

Econometric models are statistical models commonly employed in econometrics (Shobana and Umamaheswari, 2021). 
These models are useful when dealing with multiple independent variables and the aim is to examine their individual impacts 
on the dependent variable. Selecting an appropriate econometric model is a critical task that requires understanding the 
model's properties and qualifications before application. In this study, we utilize the Jarque-Bera (J-B) test, a goodness-of-
fit test, which offers advantages for symmetric distributions with medium to long tails and slightly skewed distributions 
with long tails. 

We employ the Augmented Dickey-Fuller test to test for stationarity in our research. It should be noted that for non-
stationary time series, differencing can be employed to transform them into stationary series. 

A simple linear regression with one independent variable and two dependent variables is presented below:  𝑦 = 𝛽 + 𝛽 𝑥 + 𝜀 .           𝑖 = 1. … .𝑛                                    (2) 

where: 𝑦 : dependent variable i 𝛽 : intercept 𝛽 : 𝑥  coefficient  

 𝑥 : independent variable 

Lastly, we utilize the ARIMA model to predict the price for the next day. ARIMA, which stands for Autoregressive 
Integrated Moving Average, is a statistical analysis model employed for analyzing time series data and making future trend 
predictions. The ARIMA model comprises three fundamental components: [p, d, q]. Each component serves a specific 
purpose. An AR(p) model is an autoregressive model that utilizes lagged values of 𝑌  as predictor variables. The lag 
parameter (p) indicates how many previous periods' shocks affect future periods. The (d) component in ARIMA refers to 
differencing, which is employed to achieve stationarity in the time series data. By taking differences between consecutive 
observations, non-stationary data can be transformed into a stationary form. The (q) component represents the moving 
average component of the ARIMA model. It considers the influence of the residual errors or shocks from previous 
predictions when forecasting future values.  𝑌 = 𝛼 + 𝛽 𝑌 + 𝛽 𝑌 + ⋯+ 𝛽 𝑌 + 𝜀  (3) 

where, (𝑌 .𝑌 . … .𝑌 ) are the previous series values (lags), (𝛽 .𝛽 . … .𝛽 )  are the coefficient of lag that the model 
approximate and 𝛼 is the intercept, also estimated by the model. 

Moving Average (MA) model is a model which 𝑌  depends only on the lagged forecast errors  𝑌 = 𝛼 + 𝜀 + ∅ 𝜀 + ∅ 𝜀 + ⋯+ ∅ 𝜀 + 𝜀  (4) 

where the error terms are the errors of the autoregressive models of the respective lags. The errors 𝜀  and 𝜀  are the errors 
from the following equations : 𝑌 = 𝛽 𝑌 + 𝛽 𝑌 + ⋯+ 𝛽 𝑌 + 𝜀  (5) 𝑌 = 𝛽 𝑌 + 𝛽 𝑌 + ⋯+ 𝛽 𝑌 + 𝜀  (6) 

ARIMA model can form by integration of both AR(p) and MA(q) with a differencing. So the equation becomes: 𝑌 = 𝛼 + 𝛽 𝑌 + 𝛽 𝑌 + ⋯+ 𝛽 𝑌 + 𝜀 + ∅ 𝜀 + ∅ 𝜀 + ⋯+ ∅ 𝜀  (7) 

Now, Fig. 5 shows the regression analysis and ARIMA process: 
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Fig 5. Regression analysis Flowchart 

According to the above Figure, testing for stationarity is crucial because the presence of trends and seasonality can cause 
variations in the values of a time series at different points in time. To address this issue, differencing can be employed. 
Furthermore, it is important to assess linearity based on the assumptions of econometric models, as it can impact the choice 
of appropriate analysis methods. Depending on the linearity, you can opt for either linear or non-linear regression analysis. 
Several criteria, such as R-squared and Durbin Watson, can be used to evaluate the goodness of fit. In some cases, there 
may be collinearity among predictor variables, which requires correction as these variables cannot independently predict 
the value of the dependent variable. By calculating the correlation coefficient and checking for collinearity, you can ensure 
a favorable condition for regression. For the application of the ARIMA model as a predictive model, a correlogram should 
be examined. These figures allow for the diagnosis of the ARMA model and the identification of patterns to determine the 
orders of AR (p) and MA (q) models. 

8. Findings and results 

In our study, we work with two types of variables: (1) Inputs, which represent the dependent variables, and (2) Target, 
which represents the independent variable (specifically, the price of ETH). 

To demonstrate the distribution of instances within the dataset, we present a pie chart (Figure 6). The chart showcases the 
usage rate of instances for training data, selection data, and testing data. Out of the total 708 instances, 496 instances (70.1%) 
are allocated for training, 106 instances (15%) are used for selection, another 106 instances (15%) serve as testing data, and 
there are no instances left unused (0%). 

 

Fig. 6. Instances pie chart 

15%
15%

70%

Training

Selection

Testing
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The correlation coefficient between the input and target variables is a valuable tool for assessing the significance of each 
variable in predicting the price of ETH. We employ the Pearson correlation coefficient formula, which is expressed as 
Formula (8): 𝑟 = ∑( ̅)( )∑( ̅) ∑( )    (8) 

where: 𝑟: Correlation coefficient 𝑥 : Values of the x-variable in a sample �̅�: Mean of the values of the x-variable  𝑦 : Values of the y-variable in a sample  𝑦: Mean of the values of the x-variable 

Table 6 shows the value of the correlations between all inputs and target variables. The maximum correlation (0.886806) is 
yield between the input variable CBBTCUSD and the target variable ETH price. The variables in this table are sorted in 
descending correlation order.   

Table 6  
Correlation coefficient between input variables and target 

Variables Type ETH price 
CBBTCUSD Linear 0.886806 

DJIA Linear 0.811489 
NIFTY50 Linear 0.807325 
S&P500 Linear 0.795083 
GDAXI Linear 0.755396 

NASDAQ Linear 0.744184 
T10YIE Linear 0.664956 

KS11 Linear 0.653814 
N225 Linear 0.635221 

SHANGHAI Linear 0.594489 
DFF Linear -0.55862 

USD12MD156N Linear -0.51393 
DEXUSEU Linear 0.481729 

DCOILBRENTEU Linear 0.468803 
DGS2 Linear -0.42246 
SOFR Linear -0.41098 

CBLTCUSD Linear 0.293068 
SINGAPORE Linear 0.243838 

FTSE100 Linear 0.21915 
 

9. Artificial Neural Network results 

To determine the optimal solution for predicting the next day's ETH price, we employ Artificial Neural Networks (ANN). 
The first step in this process is to identify the most suitable network architecture. The parameters taken into consideration 
for this purpose are as Table7. As mentioned previously, we utilize a trial-and-error approach to identify the most effective 
architecture. Fig. 7 illustrates the networks that have been tested in this process. The best network includes 27 neurons in 
hidden layer along with the highest R-Squared means 0.992363. Five dataset error can see in Fig. 8.  

Table 7  
Network parameters 

Parameter Value 
Input activation FX Logistic 

Output name ETH price 
Output error FX Sum of squares 

Output activation function Logistic 
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Fig. 7. Top 5 best network architecture 

 

Fig. 8. Top 5 best Dataset errors 

After finding appropriate structure, we need to train the network. Table 8 presents the training parameters. The next step is 
to test the network with 30 percentage of data. Testing error graph is depicted and presented in Fig. 9. In this figure, the 
red-line shows the actual data (Target) and the blue-line shows the predicted. As you can see, both lines are very coincident.  

Table 8  
Training parameters 

Parameters Training Validation 
Absolute error 0.114011 14.739959 
Network error 6.96E-08 0 

Error improvement 1.17E-12 
Iteration 329 

Training speed, ite/sec 0.39752 
Architecture [19-27-1] 

Training algorithm Levenberg-Marquardt 
Training stop reason No error improvement 

 

  

Fig. 9. Testing error (Actual vs. output) 

For more information and details about training graph please refer to the appendix (Fig. I). Figure 10 shows the performance 
of network (i.e., training, validation and testing) in each iteration and the best validation. The best validation performance 
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is 0.00025943 at epoch 22. You can also see the regression analysis for each dataset i.e., training, validation and testing 
separately. 

 

Fig. 10. Network Performance 

 

Fig. 11. ANN Regression 

For more information about the training state, more parameters such as gradient, mu and etc. please see appendix (Figures 
II, III). Finally, Table 9 shows different error functions and statistical measurement such as mean, std. dev etc. 
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Table 9  
Error estimations and functions 

Statistical Measurement Target output AE ARE 
Mean 235.5870 235.5534 2.8968 0.0138 

Std.Dev 110.4408 110.6292 1.5571 0.0088 
Min 104.5353 108.1162 0.0108 0.00008 
Max 636.1818 629.6741 9.3178 0.0578 

  

10. Genetic Algorithm results 

In ANN, model selection is employed to discover a neural network topology that optimizes the error on new data. There are 
two types of model selection: (1) Order selection and (2) Input selection. Order selection aims to determine the appropriate 
and optimal number of hidden layers, while input selection identifies the most important and optimal input variables. To 
perform order selection, an incremental order method is typically applied. This method begins with the minimum order and 
gradually adds a specified amount of perceptron in each iteration. By iteratively adjusting the network architecture, we can 
find the configuration that achieves the best performance. The parameters of the incremental order selection method, which 
guide the process of incrementally adding perceptron, are presented in Table 10. The error history during the incremental 
order selection is depicted in Fig. 12. The training error is represented by the blue line, while the selection error is 
symbolized by the orange line. In Table 11, the order selection results obtained from the incremental order algorithm are 
presented. These results include the final states of the neural network, the error functional, and the order selection algorithm 
employed. 

Table 10  
Order selection algorithm parameters 

Parameters Description Value 
Minimum order Number of minimum hidden perceptron's to be evaluated. 1 
Maximum order Number of maximum hidden perceptron's to be evaluated. 10 
Step Number of hidden perceptron's added in each iteration. 1 
Trials number Number of trials for each neural network. 3 
Tolerance Tolerance for the selection error in the trainings of the algorithm. 0.01 
Selection loss goal Goal value for the selection error. 0 
Maximum selection failures Maximum number of iterations at which the selection error increases. 5 
Maximum iterations number Maximum number of iterations to perform the algorithm. 1000 
Maximum time Maximum time for the order selection algorithm. 3600 
Plot training error history Plot a graph with the training error of each iteration. TRUE 
Plot selection error history Plot a graph with the selection error of each iteration. TRUE 

 

 

Fig. 12. Incremental Order error plot 

Table 11  
Incremental order results 

Parameters Value 
Optimal order 1 

Optimum training error 0.55698 
Optimum selection error 0.48018 

Iterations number 10 
Elapsed time 0:02 
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At this time, the GA is employed to select the most optimal and fitting input variables in ANN. The parameters associated 
with GA are outlined in Table 12. Throughout the GA input selection process, the error history is illustrated in Figure 13. 
The blue line corresponds to the training error, starting with an initial value of 0.257581 and concluding at 0.461958 after 
100 iterations. Conversely, the orange line represents the selection error, with an initial value of 0.161565 and a final value 
of 0.170137 after 100 iterations. Table 13 provides the training, validation, and testing errors, as well as the network 
architecture obtained through the utilization of the GA. In summary, GA enables a reduction in the number of input 
variables, leading to an increase in the R-Squared value. 

Table 12  
GA parameters as input selection 

Parameters Description Value 

Trials number Number of trials for each neural network. 1 

Tolerance Tolerance for the selection error in the trainings of the algorithm. 0.01 

Population size Size of the population of each generation. 20 

Initialization method Initialization method used in the algorithm. Random 

Fitness assignment method Fitness assignment method used in the algorithm. Rank 
Based 

Crossover method Crossover method used in the algorithm. One-
point 

Elitism size Number of individuals which will always be selected for recombination. 2 

Crossover first point First point used in the One Point and Two Point crossover method. If it is 0 the algorithm selects a 
random point for each pair of offspring's. 0 

Crossover second point Second point used in the Two Point crossover method. If it is 0 the algorithm selects a random point 
for each pair of offspring's. 0 

Selective pressure Rank Based fitness assignment allows values for the selective pressure greater than 0. 1.5 

Mutation rate This is a parameter of the mutation operator. 0.05 

Selection loss goal Goal value for the selection error. 0 
Maximum Generations 

number Maximum number of generations to perform the algorithm. 100 

Maximum time Maximum time for the inputs selection algorithm. 3600 

Plot training error history Plot a graph with the optimum training error of each generation. TRUE 

Plot selection error history Plot a graph with the optimum selection error of each generation. TRUE 

Plot generation mean history Plot a graph with the mean of the selection error of each generation. TRUE 
Plot generation standard 

deviation history Plot a graph with the standard deviation of the selection error of each generation. FALSE 

 

 

Fig. 13. GA error plot 

Table 13  
GA input selection result 

Parameters Value 
Optimal number of inputs 12 
Optimum training error 0.461958 
Optimum selection error 0.170137 

Generations number 100 
Elapsed time 0:01 
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Figure 14 illustrates the resulting deep architecture, which consists of a scaling layer, a neural network, and an un-scaling 
layer. In the Figure 14, yellow circles represent scaling neurons, blue circles denote perceptron neurons, and red circles 
indicate un-scaling neurons. The architecture has 12 input variables and 1 output variable. The complexity of the architecture 
is indicated by the number of hidden neurons, which is 1. Additionally, Table 14 presents the error estimations for the 
training, selection, and testing phases. To obtain further details and additional information regarding the history of the mean 
of the selection error in each iteration during the GA input selection process, please refer to Figure IV in the Appendix 
section. The initial value of the GA error mean is 1.58226, and it converges to a final value of 0.497 after 100 generations. 

 

Fig. 14. Final architecture 

Table 14  
Error table 

Criteria Training Selection Testing 
Sum squared error 55.0845 8.14139 10.9464 
Mean squared error 0.111058 0.076806 0.103268 

Root mean squared error 0.333253 0.277138 0.321354 
Normalized squared error 2.35655 3.03587 2.39714 

Minkowski error 78.9245 13.4898 16.0615 
 

11. Econometric models results 

One of the primary considerations in data analysis is assessing the normality assumption. Considering the histogram 
distribution helps in selecting the right econometric model for analysis, thereby enhancing the accuracy of predictions or 
estimations. In the investigated time horizon, Fig. 15 displays the distribution of ETH prices. 
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Fig 15. Ethereum price histogram 

The Ethereum price distribution is clearly non-normal and exhibits skewness, indicating the need for caution when selecting 
an appropriate model. It is advisable to employ suitable models like Least Squares with Gauss-Newton/Marquardt steps. In 
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the subsequent step, the stationarity of the process is assessed. Financial time series data typically do not exhibit stationarity. 
As depicted in Figure 15, they possess attributes such as skewness and kurtosis with fat tails. Consequently, it is essential 
to examine and identify the stationarity of the time series. Therefore, as mentioned earlier, the Augmented Dickey-Fuller 
(ADF) test is employed as a unit root test to determine if the data is stationary. 

Table 15  
ADF Unit root test results 

Null Hypothesis: ETHEREUM_PRICE has a unit root 
Exogenous: Constant   

Lag Length: 10 (Automatic - based on SIC, maxlag=19) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic  2.013394  0.9999 
Test critical values: 1% level  -3.438854  

 5% level  -2.865183  
 10% level  -2.568766  

*MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(ETHEREUM_PRICE)  
Method: Least Squares   

Date: 01/22/22   Time: 14:48   
Sample (adjusted): 12 760   

Included observations: 749 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

ETHEREUM_PRICE (-1) 0.008667 0.004305 2.013394 0.0444 
D (ETHEREUM_PRICE (-1)) -0.042978 0.035342 -1.216061 0.2244 
D (ETHEREUM_PRICE (-2)) 0.044748 0.035483 1.261110 0.2077 
D (ETHEREUM_PRICE (-3)) -0.081373 0.034782 -2.339508 0.0196 
D (ETHEREUM_PRICE (-4)) 0.071553 0.034514 2.073149 0.0385 
D (ETHEREUM_PRICE (-5)) -0.074857 0.034968 -2.140715 0.0326 
D (ETHEREUM_PRICE (-6)) 0.133395 0.035824 3.723615 0.0002 
D (ETHEREUM_PRICE (-7)) -0.171371 0.036347 -4.714853 0.0000 
D (ETHEREUM_PRICE (-8)) -0.196722 0.037460 -5.251583 0.0000 
D (ETHEREUM_PRICE (-9)) -0.044568 0.044133 -1.009859 0.3129 
D (ETHEREUM_PRICE (-10)) 0.463700 0.043892 10.56456 0.0000 

C -0.997012 1.285778 -0.775415 0.4383 

R-squared 0.257615     Mean dependent var 1.675533 
Adjusted R-squared 0.246535     S.D. dependent var 22.33864 
S.E. of regression 19.39047     Akaike info criterion 8.783333 
Sum squared resid 277105.0     Schwarz criterion 8.857331 

Log likelihood -3277.358     Hannan-Quinn criter. 8.811848 
F-statistic 23.24966     Durbin-Watson stat 1.981681 

Prob(F-statistic) 0.000000    

 

Based on the information provided in Tables 15, it can be observed that the t-statistic (i.e., 2.013394) exceeds the critical 
values at various significance levels (1%, 5%, and 10%). This indicates the presence of at least one-unit root, implying that 
the data is non-stationary. Consequently, to achieve stationarity, we apply first-level differencing. The resulting data after 
differencing is presented in Table 16. 
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Table 16  
First-level differencing 

Null Hypothesis: D(ETHEREUM_PRICE) has a unit root 
Exogenous: Constant   

Lag Length: 9 (Automatic - based on SIC, maxlag=19) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -6.247577  0.0000 
Test critical values: 1% level  -3.438854  

 5% level  -2.865183  
 10% level  -2.568766  

*MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(ETHEREUM_PRICE,2)  
Method: Least Squares   

Date: 01/22/22   Time: 14:49   
Sample (adjusted): 12 760   

Included observations: 749 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

D (ETHEREUM_PRICE (-1)) -0.702183 0.112393 -6.247577 0.0000 
D (ETHEREUM_PRICE (-1),2) -0.319966 0.105506 -3.032681 0.0025 
D (ETHEREUM_PRICE (-2),2) -0.252906 0.097320 -2.598689 0.0095 
D (ETHEREUM_PRICE (-3),2) -0.314466 0.090563 -3.472340 0.0005 
D (ETHEREUM_PRICE (-4),2) -0.224458 0.084917 -2.643265 0.0084 
D (ETHEREUM_PRICE (-5),2) -0.278908 0.077484 -3.599554 0.0003 
D (ETHEREUM_PRICE (-6),2) -0.130771 0.070846 -1.845855 0.0653 
D (ETHEREUM_PRICE (-7),2) -0.287382 0.063306 -4.539545 0.0000 
D (ETHEREUM_PRICE (-8),2) -0.470131 0.053389 -8.805735 0.0000 
D (ETHEREUM_PRICE (-9),2) -0.490324 0.041939 -11.69124 0.0000 

C 1.134833 0.730961 1.552522 0.1210 

R-squared 0.639090     Mean dependent var 0.068234 
Adjusted R-squared 0.634200     S.D. dependent var 32.12648 
S.E. of regression 19.43055     Akaike info criterion 8.786148 
Sum squared resid 278629.2     Schwarz criterion 8.853980 

Log likelihood -3279.412     Hannan-Quinn criter. 8.812286 
F-statistic 130.6832     Durbin-Watson stat 1.993763 

Prob(F-statistic) 0.000000    

 

After performing the differencing on the data, we can employ the ARIMA model for prediction. In this analysis, the ARIMA 
model estimation is conducted using the automatic ARMA forecasting feature in Eviews10. Table 17 presents various model 
selections based on significant criteria and multiple evaluation metrics. Additionally, Table 18 summarizes the ARIMA 
equation. The results of the ARIMA forecasting model are summarized in Table 19. Based on the information provided in 
these tables, it can be concluded that the optimal model order for the ARMA model is AR (3) and MA (4) with an AIC 
value of 8.948195. Since we have applied one level of differencing, the final ARIMA model is denoted as (3,1,4). According 
to Table 17, we have used 25 lags to estimate ARMA model.  
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Table 17  
Model selection criteria Table 
Model Selection Criteria Table   Dependent Variable: D (ETH, 2)  Sample: 1 760   Included   

Model LogL AIC* BIC HQ 
(3,4) -3382.366070  8.948195  9.003177  8.969371 
(4,4) -3381.657401  8.948964  9.010055  8.972492 
(4,3) -3396.485978  8.985451  9.040433  9.006626 
(1,4) -3403.538291  8.998782  9.041545  9.015251 
(2,3) -3404.098971  9.000261  9.043025  9.016731 
(2,4) -3403.528849  9.001395  9.050268  9.020218 
(3,2) -3404.781705  9.002063  9.044826  9.018532 
(3,3) -3404.455589  9.003841  9.052713  9.022663 
(4,2) -3404.715235  9.004526  9.053398  9.023348 
(1,3) -3413.538817  9.022530  9.059184  9.036647 
(1,2) -3415.150520  9.024144  9.054689  9.035908 
(4,1) -3413.712596  9.025627  9.068390  9.042096 
(3,1) -3416.285516  9.029777  9.066432  9.043894 
(0,4) -3417.972995  9.034230  9.070884  9.048346 
(2,2) -3421.650850  9.043934  9.080588  9.058050 
(0,2) -3423.858877  9.044483  9.068919  9.053894 
(1,1) -3423.912214  9.044623  9.069060  9.054034 
(0,1) -3425.061348  9.045017  9.063344  9.052075 
(0,3) -3423.596016  9.046427  9.076973  9.058191 
(2,1) -3423.818635  9.047015  9.077560  9.058779 
(4,0) -3489.221507  9.222220  9.258875  9.236337 
(3,0) -3496.745811  9.239435  9.269980  9.251199 
(2,0) -3553.783216  9.387291  9.411727  9.396702 
(1,0) -3580.043286  9.453940  9.472267  9.460998 
(0,0) -3701.327482  9.771313  9.783531  9.776018 

 

Table 18  
Equation Output 
Dependent Variable: D(ETH,2)   Method: ARMA Maximum Likelihood (BFGS)   Sample: 3 760    Included observations: 758  
Convergence achieved after 89 iterations   Coefficient covariance computed using outer product of gradients  

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.015577 0.017391 0.895707 0.3707 
AR (1) -0.241086 0.038292 -6.295954 0.0000 
AR (2) -0.317776 0.043727 -7.267317 0.0000 
AR (3) -0.940496 0.040967 -22.95759 0.0000 
MA (1) -0.823171 0.048955 -16.81473 0.0000 
MA (2) 0.143809 0.071321 2.016356 0.0441 
MA (3) 0.467407 0.087170 5.362009 0.0000 
MA (4) -0.751360 0.053465 -14.05333 0.0000 

SIGMASQ 436.1670 7.264702 60.03921 0.0000 
R-squared 0.572642     Mean dependent var 0.047233 

Adjusted R-squared 0.568077     S.D. dependent var 31.96813 
S.E. of regression 21.00971     Akaike info criterion 8.948195 
Sum squared resid 330614.6     Schwarz criterion 9.003177 

Log likelihood -3382.366     Hannan-Quinn criter. 8.969371 
F-statistic 125.4536     Durbin-Watson stat 1.940383 

Prob(F-statistic) 0.000000    
Inverted AR Roots  .35+.93i      .35-.93i        -.95 
Inverted MA Roots       .98      .35+.88i    .35-.88i      -.85 

 

Table 19  
ARIMA forecasting summary 
Automatic ARIMA Forecasting   Selected dependent variable: D (ETH, 2)  Sample: 1760  Included observations: 758 
Number of estimated ARMA models: 25 
Number of non-converged estimations: 0 
Selected ARMA model: (3,4) 
AIC value: 8.94819543562 
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According to Figure 16, it can be observed that the ARMA model with an order of (3, 4), representing AR (3) and MA (4), 
exhibits the lowest error based on the AIC criterion. It is important to note that if the difference in AIC values, also known 
as delta-AIC, is less than 2, there is no significant difference between the competing models. In Figure 16, all the delta-AIC 
values are less than 2 when comparing the models with each other. It is worth mentioning that the selection of ARMA (3, 
4) was obtained using the automatic ARIMA forecasting feature in Eviews. 
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Fig. 16. Akaike information criteria (top 20 models) 

The subsequent step involves conducting a regression analysis using Eviews10 as the analytical tool. The Least Squares 
method, specifically Gauss-Newton/Marquardt steps, is utilized with 500 iterations to estimate the regression and establish 
the relationship between the selected input variables obtained through GA and the target variable, ETH price mean. In Table 
20, it is evident that variables with a probability value lower than 0.05 are deemed more significant in explaining the model. 
Consequently, variables C (6), C (11), and C (12) are considered less important. The high R-squared value of approximately 
0.95 indicates a strong fit and suggests a good regression model. Figure 17 depicts the actual and predicted (fitted) values, 
along with the residuals. The red line represents the actual data, the green line represents the predicted data, and the blue 
line represents the residual. The close alignment between the red and green lines signifies a good forecast. For further 
insights into the prediction of ETH price, please refer to the appendix (Fig V). 

Table 20  
Ethereum regression using LSM 
Dependent Variable: ETHEREUM_PRICE Method: Least Squares (Gauss-Newton / Marquardt steps) Sample: 1740 
Included observations: 735 after adjustments  
ETHEREUM_PRICE=C (1) +C (2) *CBBTCUSD+C (3) *CBLTCUSD+C (4) 

        *DCOILBRENTEU+C (5) *DGS2+C (6) *DJIA+C (7) *FTSE100+C (8) *GDAXI 
        +C (9) *KS11+C (10) *NASDAQ+C (11) *NIFTY50+C (12) *SINGAPORE 
        +C (13) *USD12MD156N   

 Coefficient Std. Error t-Statistic Prob.   
C (1) -266.8373 36.81040 -7.248964 0.0000 
C (2) 0.021891 0.000649 33.72564 0.0000 
C (3) 1.242690 0.102197 12.15980 0.0000 
C (4) 0.978225 0.335595 2.914895 0.0037 
C (5) -86.67940 20.39444 -4.250149 0.0000 
C (6) 0.001334 0.001104 1.208265 0.2273 
C (7) -0.058489 0.007593 -7.702550 0.0000 
C (8) -0.010569 0.002955 -3.576212 0.0004 
C (9) 0.071957 0.011227 6.409238 0.0000 

C (10) 0.031582 0.003478 9.081595 0.0000 
C (11) -0.000578 0.002230 -0.259207 0.7955 
C (12) 0.021562 0.016379 1.316464 0.1884 
C (13) 156.1531 21.02015 7.428733 0.0000 

R-squared 0.946865     Mean dependent var 255.0865 
Adjusted R-squared 0.945982     S.D. dependent var 155.0148 
S.E. of regression 36.02808     Akaike info criterion 10.02400 
Sum squared resid 937172.3     Schwarz criterion 10.10536 

Log likelihood -3670.821     Hannan-Quinn criter. 10.05538 
F-statistic 1072.178     Durbin-Watson stat 0.139845 

Prob(F-statistic) 0.000000    
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12. Comparing the results 

After conducting the experiments, it is necessary to compare the results and identify the superior model. We utilized three 
types of models for predicting the ETH price for the next day. One of the primary criteria for comparing these models is the 
R-squared value. The R-squared rate in the ANN model is 0.99766, while for the economic and econometric models, 
specifically regression analysis and ARMA, the rates are 0.946865 and 0.572642, respectively. Based on the R-squared 
values, the ANN model demonstrates the best performance. It should be noted that GA was used for feature selection and 
identifying the most important and relevant input variables, and it was not a predictive model itself. Furthermore, we need 
to compare the results based on the forecasting error. The error rates in the ANN, regression analysis, and ARMA models 
are 1.5571, 21.00971, and 36.02808, respectively. According to the error estimation, the ANN model also exhibits the best 
performance. Based on the obtained results, there are still some important points to consider. As mentioned earlier, AI-
based models like ANN have certain advantages: 

• Accelerated calculations 

• Absence of strict pre-assumptions 

• Compatibility with complex data structures 

• User-friendly interfaces 

• Strong fitting capabilities 

However, these models also have some limitations: 

• Prone to local optima (minima/maxima trap) 

• Sensitive to parameter tuning 

• Susceptible to early convergence/divergence during retraining 

• Risk of overtraining 

On the other hand, economic and econometric models have their own limitations as well. Prior to conducting regression 
analysis and forecasting models like ARMA, various assumptions such as linearity, normality, and stationarity should be 
evaluated. Failure to consider all the stages of the process may result in biased estimators rather than unbiased ones. Time 
series models primarily focus on historical data and may not effectively handle extreme jumps or drops, among other factors. 
Therefore, before performing any calculations, it is crucial to consider multiple factors such as data structure complexity, 
data size, parameter tuning, and other relevant conditions. By doing so, one can confidently select models or methods that 
align with their specific process and desired outcomes. 
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13. Conclusion 

In this study, we aimed to predict the price of Ethereum using two types of models: I. AI-based methods and II. Econometric 
models. Economic and global indicators such as S&P500, NIFTY50, NASDAQ, etc., were employed as input variables. To 
identify the most important input variables, we utilized GA as a feature selection technique. While GA offers advantages 
such as adaptability to complex structures and lack of restrictive assumptions, it also has limitations including the potential 
removal of important indicators, time-consuming variable selection, early convergence, and other associated conditions. 
Furthermore, we employed ANN to find an optimal solution for ETH price forecasting in the next day. To ensure 
comparability and evaluate the performance of AI-based methods, we compared them with econometric models such as 
regression analysis and time series models. The results indicated that AI-based models, specifically ANN and GA, 
outperformed the econometric models, demonstrating higher predictability and offering advantages such as faster 
computation speed and adaptability to complex structures, among others. In summary, it is important to note that no single 
model or method can be deemed superior for forecasting purposes indefinitely. However, in the context of this study, the 
results suggest that AI-based models, namely ANN and GA, achieved better performance in predicting the ETH price. 

Finally, we would like to highlight some important points and provide recommendations for future research: 

One crucial and sensitive aspect of applying ANN is the tuning and parameter setting, including initial population, training 
rate, number of iterations, etc. These factors can significantly impact accuracy and predictability, and therefore, should be 
carefully considered. 

As a recommendation for future research to obtain improved results, the utilization of other metaheuristic algorithms can 
be explored. These algorithms are powerful in both exploration and exploitation, potentially enhancing the search for 
optimal solutions and mitigating the risk of local optima/maxima traps. 
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Fig. I. Training graph 

 

  

Fi. II. Training state 

 

  

Fig. III. Progress 
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Fig. IV. GA error mean plot 
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Fig. V. ETH-price forecasting 
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